
Page 1

Exam 2 – Paper and Pencil part (Fall, 2020-21)

Name: ___ Section: _______

Rules and Expectations Sections 1 and 2 for Mutchler. Section 3 for Noureddine. Section 4 for Ebrahimi.

At the beginning of this exam, you will receive the Expectations about Academic Integrity
for this exam -- it is the same as what you were given to read previously. Re-read that
document as needed. Sign it and turn it in when you finish this exam (both parts).

Two parts (this is Part 1, Paper-and-Pencil)

For this part, the ONLY external resource you may use is two 8½ by 11-inch sheets of paper

(or one double-sided sheet), with whatever you want on it, typed or handwritten or a

combination of the two. You must have prepared the sheets before beginning this exam. You

may also use a calculator if you like (but only for calculating).

Communication

For both parts of the exam, you must not communicate with anyone except your instructors
and their assistants, if any. In particular:

● You must not talk with anyone else or exchange information with them during this exam.

● After this exam, you must not talk about the exam with anyone who has not yet taken it.

Do NOT use email, chat or the like during this exam. Close any such applications now.

Problem
Points

Possible
Points
Earned

Comments

1 7

2 3

3 10

4 10

5 8

6 12

Total
(of 100 on the exam)

50

Page 2

1. Consider a function named do_it that takes a list of integers as its sole argument.
For each of the following possible specifications for what do_it returns:

Circle Yes if the code for do_it would require a loop.

Circle No if the code for do_it would NOT require a loop.

If do_it returns:

a. The number of odd integers in the list. Yes No

b. The average of the integers in the list. Yes No

c. The number of integers in the list. Yes No

d. True if the first integer in the list is even, else False. Yes No

e. True if the list contains no even integers, else False. Yes No

f. The second smallest integer in the list. Yes No

g. The last integer in the list. Yes No

2. Consider a function named middle that takes a single argument:
a sequence of numbers, where the length of the sequence is guaranteed to be odd.

The function returns the number at the middle of the sequence. For example:

● middle([90, 10, 45]) returns 10

● middle([4, 1, 6, 18, 10, 12, 21]) returns 18

● middle([33]) returns 33

Write (in the box below) a complete implementation of the above middle function.

def middle(numbers):

Page 3

3. Consider the code snippet below. It is a contrived example with poor style, but it will run
without errors. What does it print when it runs? Write your answer in the box to the right
of the code. Show your work by making notations in the code or by using the empty
space below or on another sheet of paper, as desired.

def home():

 x = bear(3, 8)

 print("Home A:", x)

 y = bear(ant(4), ant(1))

 print("Home B:", y)

def ant(x):

 print("Ant:", x)

 x = x + 5

 return x

def bear(x, y):

 print("Bear A:", x, y)

 r = ant(x + 4)

 print("Bear B:", r)

 return ant(r + y)

 print(ant(100))

 return 33

print("OK:", ant(101) % 100)

home()

Output:

Page 4

4. Consider the code on the next page. It is a contrived example with poor style but will run
without errors. In this problem, you will trace the execution of the code. As each
location is encountered during the run:

● CIRCLE each variable that is defined at that location.

● WRITE the VALUE of each variable that you circled directly BELOW the circle.

Location 1

(1st time)

a b x self.a self.b bear.a bear.b cat.a cat.b dog.a dog.b

Location 1

(2nd time)

a b x self.a self.b bear.a bear.b cat.a cat.b dog.a dog.b

Location 2

(1st time)

a b x self.a self.b bear.a bear.b cat.a cat.b dog.a dog.b

Location 2

(2nd time)

a b x self.a self.b bear.a bear.b cat.a cat.b dog.a dog.b

Location 3

(1st time)

a b x self.a self.b bear.a bear.b cat.a cat.b dog.a dog.b

Location 3

(2nd time)

a b x self.a self.b bear.a bear.b cat.a cat.b dog.a dog.b

Location 4

a b x self.a self.b bear.a bear.b cat.a cat.b dog.a dog.b

Location 5
a b x self.a self.b bear.a bear.b cat.a cat.b dog.a dog.b

Location 6
a b x self.a self.b bear.a bear.b cat.a cat.b dog.a dog.b

Location 7
a b x self.a self.b bear.a bear.b cat.a cat.b dog.a dog.b

Location 8
a b x self.a self.b bear.a bear.b cat.a cat.b dog.a dog.b

Page 5

class Animal():

 def __init__(self, a, x):

 self.a = a + 4

 self.b = x * 10
 a = 31

 #### --- Location 1 ---

 def zoo(self, a, bear):

 #### --- Location 2 ---
 a = a + 1

 self.a = self.a + 100
 bear.b = bear.b + 3

 #### --- Location 3 ---
 return self.b + bear.a

def beach(b):

 #### --- Location 4 ---
 return Animal(b, b + 5)

def main():

 a = 10

 b = 8

 cat = Animal(a, b)

 #### --- Location 5 ---
 dog = beach(1)

 #### --- Location 6 ---
 x = cat.zoo(1, dog)

 #### --- Location 7 ---
 a = dog.zoo(2, dog)

 #### --- Location 8 ---

main()

Page 6

5. Consider the code snippet below. It is a contrived example with poor style, but it will run
without errors.

What does it print when it runs? Write your answer in the box below.

Show your work in any way that you think would be helpful.

s = [5, 3, 1, 8, 4,

 9, 7, 6, 2, 10, 20]

a = 3

b = 0

print(len(s))

for k in range(1, 10, 3):

 a = a + s[k]

 b = b + s[len(s) - k - 1]

 print("A.", k, len(s) - k - 1)

 print("B.", s[k], s[len(s) - k - 1])

 print("C.", a, b)

 print()

print("Now:", a, b)

Page 7

6. Consider a function named average that takes a single argument:
a sequence of numbers, where the length of the sequence is guaranteed to be odd.

The function returns the average of the numbers in the sequence that are bigger than or
equal to the number at the middle of the sequence. For example:

● average([1, 7, 6, 5, 10, 3, 9]) returns 7.4
since the number at the middle of the sequence is 5
and the numbers in the list bigger than or equal to 5 are 7, 6, 5, 10 and 9
and those 5 numbers add up to 7 + 6 + 5 + 10 + 9, which is 37,
and the average of 5 numbers that sum to 37 is 37 / 5, which is 7.4.

● average([2, 1, 4, 4, 7]) returns 5.0 since the number at the middle
of the sequence is 4, and the numbers in the list bigger than or equal to 4 are
4, 4 and 7, and the sum of those 3 numbers is 15, so the average of them is
15/3, which is 5.0.

● average([9, 4, 7, 6, 2]) returns 8.0 since the number at the middle of the
sequence is 7, and the numbers in the list bigger than or equal to 7 are 9 and 7, and
the sum of those 2 numbers is 16, so the average of them is 16/2, which is 8.0.

Write (in the box below) a complete implementation of the above average function.

def average(numbers):

Page 8

This is the back page of this exam. Use it for scratch work if you like.

