
Page 1 of 10

Test 2 – Practice Problems for the Paper-and-Pencil portion

Solution

1. Consider the code snippets defined below. They are contrived examples with poor style
but will run without errors. For each, what does it print when main runs? (Each is an

independent problem. Pay close attention to the order in which the statements are
executed.)

Prints: main 1 5 3 Prints: main 1 5 3 Prints: main 1 5 3

foo 1 5 3 foo 1 5 3 foo 1 3 5

foo 2 66 77 88 99 foo 2 66 77 88 99 foo 2 66 77 88 99

main 2 5 3 Prints: main 2 5 3 Prints: main 2 5 3

2. Consider the code snippet to the right. Both print statements are wrong.

 Explain why the first print statement (in main) is wrong.

The name z in main is not defined. (The z in foo has
nothing to do with the z in main.)

 Explain why the second print statement (in foo) is wrong.

The name x in foo is not defined. (The x in main has
nothing to do with the x in foo.)

def main():

 x = 5

 y = 3

 print('main 1', x, y)

 foo(x, y)

 print('main 2', x, y)

def foo(a, b):

 print('foo 1', a, b)

 a = 66

 b = 77

 x = 88

 y = 99

 print('foo 2', a, b,

 x, y)

def main():

 x = 5

 y = 3

 print('main 1', x, y)

 foo(x, y)

 print('main 2', x, y)

def foo(x, y):

 print('foo 1', x, y)

 a = 66

 b = 77

 x = 88

 y = 99

 print('foo 2', a, b,

 x, y)

def main():

 x = 5

 y = 3

 print('main 1', x, y)

 foo(y, x)

 print('main 2', x, y)

def foo(x, y):

 print('foo 1', x, y)

 a = 66

 b = 77

 x = 88

 y = 99

 print('foo 2', a, b,

 x, y)

def main():

 x = 5

 foo(x)

 print(z)

def foo(a):

 print(x)

 z = 100

 return z

Page 2 of 10

3. Consider the code snippet below. It is a contrived example with poor style, but it will run
without errors. What does it print when it runs?

Write your answer in the box to the right of the code.

def main():

 a = alpha()

 print()

 b = beta()

 print()

 g = gamma()

 print()

 print("main!", a, b, g)

def alpha():

 print("Alpha!")

 return 7

def beta():

 print("Beta!")

 return 15 + alpha()

def gamma():

 print("Gamma!", alpha(), beta())

 return alpha() + beta() + alpha()

main()

Output:

Alpha!

Beta!

Alpha!

Alpha!

Beta!

Alpha!

Gamma! 7 22

Alpha!

Beta!

Alpha!

Alpha!

main! 7 22 36

Page 3 of 10

4. Consider the code snippet below. It is a
contrived example with poor style, but it
will run without errors. What does it
print when it runs?

Write your answer in the box to the right.

5. Consider the code snippet below. It is a contrived
example with poor style, but it will run without errors.
What does it print

when it runs?

Write your answer in

the box to the right.

 b = [44]

 a = (50, 30, 60, 77)

 x = 3

 for k in range(len(a)):

 b.append(a[x - k])

 print(k, b)

 print('A.', a)

 print('B.', b)

 print('X.', x)

 x = 2

 while (x < 9):

 print(x)

 x = x + 3

 print('One', x)

 print()

 y = 2

 while (True):

 print(y)

 if y > 9:

 break

 y = y + 3

 print('Two', y)

Output:

0 [44, 77]

1 [44, 77, 60]

2 [44, 77, 60, 30]

3 [44, 77, 60, 30, 50]

A. (50, 30, 60, 77)

B. [44, 77, 60, 30, 50]

X. 3

Output:

2

5

8

One 11

2

5

8

11

Two 11

Page 4 of 10

7. Consider the following two candidate function definitions:

a. Which is “better”? Circle the better function.

b. Briefly explain why you circled the one you did.

The second form allows the caller of the function to print ANYTHING, while
the first is useful only for printing 'hello'.

8. True or false: Variables are REFERENCES to objects. True False (circle your choice)

9. True or false: Assignment (e.g. x = 100)
causes a variable to refer to an object. True False (circle your choice)

10. True or false: Function calls (e.g. foo(54, x))
also cause variables to refer to objects. True False (circle your choice)

11. Give one example of an object that is a container object:

Here are several examples: a list, a tuple, a rg.Circle, a Point, an rg.window

12. Give one example of an object that is NOT a container object:

Here are several examples: an integer, a float, None, True, False.

13. True or false: When an object is mutated, it no longer refers
to the same object to which it referred prior to the mutating. True False
 (circle your choice)

def foo():

 print('hello')

def foo(x):

 print(x)

Page 5 of 10

14. Consider the following statements:

c1 = rg.Circle(rg.Point(200, 200), 25)

c2 = c1

At this point, how many rg.Circle objects have been constructed? 1 2
 (circle your choice)

15. Continuing the previous problem, consider an additional statement that follows the
preceding two statements:

c1.radius = 77

After the above statement executes, the variable c1 refers

to the same object to which it referred prior to this statement. True False
 (circle your choice)

16. Continuing the previous problems:

 What is the value of c1’s radius after the
statement in the previous problem executes? 25 77 (circle your choice)

 What is the value of c2’s radius after the
statement in the previous problem executes? 25 77 (circle your choice)

17. Which of the following two statements mutates an object? (Circle your choice.)

numbers1 = numbers2

numbers1[0] = numbers2[0]

18. Mutable objects are good because: They allow for efficient use of space and
hence time – passing a mutable object to a function allows the function to
change the “insides” of the object without having to take the space and time
to make a copy of the object. As such, it is an efficient way to send
information back to the caller.

19. Explain briefly why mutable objects are dangerous. When the caller sends an object
to a function, the caller may not expect the function to modify the object in
any way. If the function does an unexpected mutation, that may cause the
caller to fail. If the object is immutable, no such danger exists – the caller
can be certain that the object is unchanged when the function returns
control to the caller.

20. What is the difference between the following two expressions?

numbers[3] numbers = [3]

The expression on the left refers to the index 3 item in the sequence called

numbers. It refers to that item but changes nothing (of itself). The

statement on the right sets the variable called numbers to a list containing a

single item (the number 3).

Page 6 of 10

21. In Session 9, you implemented a Point class. Recall that a Point object has instance
variables x and y for its x and y coordinates

Consider the code snippets below. They are contrived examples with poor style but will
run without errors. For each, what does it print when main runs?

(Each is an
independent

problem.)

Prints: 11 12 Prints: [1, 2, 3]

 77 200 [888, 200, 300]

 77 0 [22, 200]

def main():

 p1 = Point(11, 12)

 p2 = Point(77, 88)

 p3 = foo(p1, p2)

 print(p1.x, p1.y)

 print(p2.x, p2.y)

 print(p3.x, p3.y)

def foo(p1, p2):

 p1 = Point(0, 0)

 p1.x = 100

 p2.y = 200

 p3 = Point(p2.x, p1.y)

 return p3

def main():

 a = [1, 2, 3]

 b = [100, 200, 300]

 c = foofoo(a, b)

 print(a)

 print(b)

 print(c)

def foofoo(a, b):

 a = [11, 22, 33]

 a[0] = 777

 b[0] = 888

 x = [a[1], b[1]]

 return x

Page 7 of 10

22. In Session 9, you implemented a Point class. Recall that a Point object has instance
variables x and y for its x and y coordinates.

Here, you will implement a portion of a class called TwoPoints, described as follows:

 The TwoPoints constructor takes 2 arguments, each a Point object.

 The TwoPoints class has a method called swap(). It swaps the two points that a
TwoPoints object has.

 The TwoPoints class has a method called number_of_swaps() that returns the
number of times the TwoPoints object has called its swaps() method.

In this column, write code that would TEST
the TwoPoints class.

p1 = Point(10, 20)

p2 = Point(88, 44)

tp = TwoPoints(p1, p2)

print('Expected:', p1, p2)

print('Actual: ', tp.p1, tp.p2)

tp.swap()

print('Expected:', p2, p1)

print('Actual: ', tp.p1, tp.p2)

tp.swap()

print('Expected:', p1, p2)

print('Actual: ', tp.p1, tp.p2)

print('Expected:', 2)

print('Actual: ', tp.nswaps)

In this column, write the IMPLEMENTATION of
the TwoPoints class.

class TwoPoints(object):

 def __init__(self, p1, p2):

 self.p1 = Point(p1.x, p1.y)

 self.p2 = Point(p2.x, p2.y)

 self.nswaps = 0

 def swap(self):

 temp = self.p1

 self.p1 = self.p2

 self.p2 = temp

 self.nswaps = self.nswaps + 1

 def number_of_swaps(self):

 return self.nswaps

Page 8 of 10

23. In Session 9, you implemented a Point class. Recall that a Point object has instance
variables x and y for its x and y coordinates.

Consider the code in the box below. On the next page, draw the box-and-pointer diagram
for what happens when main runs. Also on the next page, show what the code would print
when main runs.

def main():

 point1 = Point(8, 10)

 point2 = Point(20, 30)

 x = 405

 y = 33

 print('Before:', point1, point2, x, y)

 z = change(point1, point2, x, y)

 print('After:', point1, point2, x, y, z)

def change(point1, point2, x, a):

 print('Within 1:', point1, point2, x, a)

 point2.x = point1.x

 point2 = Point(5, 6)

 point1.y = point2.y

 x = 99

 point1.x = x

 a = 77

 print('Within 2:', point1, point2, x, a)

 return a

Page 9 of 10

 x y

 point1

 point2

 x

 y

 z

 point1

 point2

 x

 a

 x y

 x y

8 10

20 30

5 6

Draw your box-and-pointer diagram here:

Before: The RED lines reflect the execution of the lines in main before the call to function
change. Therefore, what gets printed BEFORE the call to change is:

Point(8, 10) Point(20, 30) 405 33

Within: The GREEN lines reflect the execution of the call to function change. Thus

what gets printed at Within 1: is Point(8, 10) Point(20, 30) 405 33

The PURPLE lines reflect the execution of the lines in change. Therefore, what gets printed

WITHIN the call to change (at the end of that function, i.e., when Within 2: is printed) is:

Point(99, 6) Point(5, 6) 99 77

After: The BLUE line reflects the execution of the return from change and the assignment to z

in function main. Therefore, what gets printed AFTER the call to change is:

Point(99, 6) Point(8, 30) 405 33 77

405

33

77

99

x
x

x

x

x

What prints when main runs?

Assume that Point objects get
printed as per this example:

Point(8, 10).

x

,main

,change

Page 10 of 10

From the picture on the previous page, we see that:

What prints when main runs?

Assume that Point objects get printed as per this example: Point(8, 10).

Before: Point(8, 10) Point(20, 30) 405 33

Within 1: Point(8, 10) Point(20, 30) 405 33

Within 2: Point(99, 6) Point(5, 6) 99 77

After: Point(99, 6) Point(8, 30) 405 33 77

