
Page	1	of	12	

Test 2 – Practice Problems for the Paper-and-Pencil portion
Solution

1. Consider the code snippets defined below. They are contrived examples with poor style
but will run without errors. For each, what does it print when main runs? (Each is an
independent problem. Pay close attention to the order in which the statements are
executed.)

Prints: Prints: Prints:

main 1 5 3 main 1 5 3 main 1 5 3
foo 1 5 3 foo 1 5 3 foo 1 3 5
foo 2 66 77 88 99 foo 2 66 77 88 99 foo 2 66 77 88 99

main 2 5 3 main 2 5 3 main 2 5 3

Note: extra spaces have been inserted in the above to make the output more readable.

Also note how part of the third problem has a DIFFERENT answer than the first two problems.

def main():
 x = 5
 y = 3
 print('main 1', x, y)
 foo(x, y)
 print('main 2', x, y)

def foo(a, b):
 print('foo 1', a, b)
 a = 66
 b = 77
 x = 88
 y = 99
 print('foo 2', a, b,
 x, y)

def main():
 x = 5
 y = 3
 print('main 1', x, y)
 foo(x, y)
 print('main 2', x, y)

def foo(x, y):
 print('foo 1', x, y)
 a = 66
 b = 77
 x = 88
 y = 99
 print('foo 2', a, b,
 x, y)

def main():
 x = 5
 y = 3
 print('main 1', x, y)
 foo(y, x)
 print('main 2', x, y)

def foo(x, y):
 print('foo 1', x, y)
 a = 66
 b = 77
 x = 88
 y = 99
 print('foo 2', a, b,
 x, y)

Page	2	of	12	

2. Consider the code snippet to the right. Both print statements are wrong.

• Explain why the first print statement (in main) is wrong.

The	name			z			in	main	is	not	defined.		(The			z			in	foo	has	
nothing	to	do	with	the		z		in	main.)

• Explain why the second print statement (in foo) is wrong.

The	name			x			in	foo		is	not	defined.		(The			x			in	main	has	
nothing	to	do	with	the		x		in	foo.)

def main():
 x = 5
 foo(x)
 print(z)

def foo(a):
 print(x)
 z = 100
 return z

Page	3	of	12	

3. Consider the code snippet below. It is a contrived example with poor style, but it will run
without errors. What does it print when it runs?

Write your answer in the box to the right of the code.

def main():
 a = alpha()

 print()
 b = beta()

 print()
 g = gamma()

 print()
 print("main!", a, b, g)

def alpha():
 print("Alpha!")
 return 7

def beta():
 print("Beta!")
 return 15 + alpha()

def gamma():
 print("Gamma!", alpha(), beta())
 return alpha() + beta() + alpha()

main()

Output:	
	

Alpha!	

	

Beta!	

Alpha!	

	

Alpha!	

Beta!	

Alpha!	

Gamma!					7						22	

Alpha!	

Beta!	

Alpha!	

Alpha!	

	

main!				7					22						36

Page	4	of	12	

4. Consider the code snippet below. It is a
contrived example with poor style, but it
will run without errors. What does it
print when it runs?

Write your answer in the box to the right.

	

 b = [44]
 a = (50, 30, 60, 77)
 x = 3

 for k in range(len(a)):
 b = b + [a[x - k]]
 print(k, b)

 print('A.', a)
 print('B.', b)
 print('X.', x)

Output:	

0 [44, 77]

1 [44, 77, 60]

2 [44, 77, 60, 30]

3 [44, 77, 60, 30, 50]

A. (50, 30, 60, 77)

B. [44, 77, 60, 30, 50]

X. 3

Page	5	of	12	

5. Consider a function whose name is last_n_reversed that takes two arguments: a
string s and a nonnegative integer n. It returns a string that is the last n characters
of the string s, in reverse order of how they appear in s.

Here is a code snipped that illustrates a sample run of the function:

 my_string = 'Ada Lovelace'

 answer = last_n_reversed(my_string, 6)

 print(answer)

would print ecalev in the Console.

Write a complete implementation, including the header (def) line, of the above
last_n_reversed function.

def last_n_reversed(s, n):
 result = ''
 last = len(s) - 1
 for k in range(n):
 result = result + s[last - k]

 return result

6. Consider a function whose name is reverse_n that takes two arguments: a list s
and a nonnegative integer n that is less than half of the length of the list. It mutates
the list s by swapping the first n items in the list with the last n items in the list.

Here is a code snipped that illustrates a sample run of the function:

 my_list = [10, 64, 33, 20, 82, 90, 44, 50, 37, 100, 4]

 answer = reverse_n(my_list, 3)

 print(my_list)

would print [4, 100, 37, 20, 82, 90, 44, 50, 33, 64, 10] in the Console.

Write a complete implementation, including the header (def) line, of the above
reverse_n function.

def reverse_n(s, n):
 last = len(s) - 1
 for k in range(n):
 temp = s[k]
 s[k] = s[last - k]
 s[last - k] = temp

Page	6	of	12	

7. Consider the following two candidate function definitions:	

	

	

 	

a. Which is “better”? Circle the better function.

b. Briefly explain why you circled the one you did.

The	second	form	allows	the	caller	of	the	function	to	print	ANYTHING,	while	
the	first	is	useful	only	for	printing	'hello'.	

	

	

8. True or false: Variables are REFERENCES to objects. True False (circle your choice)

9. True or false: Assignment (e.g. x = 100)
causes a variable to refer to an object. True False (circle your choice)

10. True or false: Function calls (e.g. foo(54, x))
also cause variables to refer to objects. True False (circle your choice)

11. Give one example of an object that is a container object:

Here	are	several	examples:		a	list,	a	tuple,	a	rg.Circle,	a	Point,	an	rg.window	

12. Give one example of an object that is NOT a container object:

Here	are	several	examples:		an	integer,	a	float,	None,	True,	False.	

13. True or false: When an object is mutated, it no longer refers
to the same object to which it referred prior to the mutating. True False
 (circle your choice)

def foo():
 print('hello')

def foo(x):
 print(x)

Page	7	of	12	

14. Consider the following statements:

c1 = rg.Circle(zg.Point(200, 200), 25)
c2 = c1

At this point, how many rg.Circle objects have been constructed? 1 2
 (circle your choice)

15. Continuing the previous problem, consider an additional statement that follows the
preceding two statements:

c1.radius = 77

After the above statement executes, the variable c1 refers
to the same object to which it referred prior to this statement. True False
 (circle your choice)

16. Continuing the previous problems:

• What is the value of c1’s radius after the
statement in the previous problem executes? 25 77 (circle your choice)

• What is the value of c2’s radius after the
statement in the previous problem executes? 25 77 (circle your choice)

17. Which of the following two statements mutates an object? (Circle your choice.)

numbers1 = numbers2

numbers1[0] = numbers2[0]

18. Mutable objects are good because: They	allow	for	efficient	use	of	space	and	
hence	time	–	passing	a	mutable	object	to	a	function	allows	the	function	to	
change	the	“insides”	of	the	object	without	having	to	take	the	space	and	time	
to	make	a	copy	of	the	object.		As	such,	it	is	an	efficient	way	to	send	
information	back	to	the	caller.

19. Explain briefly why mutable objects are dangerous.		When	the	caller	sends	an	object	
to	a	function,	the	caller	may	not	expect	the	function	to	modify	the	object	in	
any	way.		If	the	function	does	an	unexpected	mutation,	that	may	cause	the	
caller	to	fail.		If	the	object	is	immutable,	no	such	danger	exists	–	the	caller	
can	be	certain	that	the	object	is	unchanged	when	the	function	returns	
control	to	the	caller.

20. What is the difference between the following two expressions?

numbers[3] numbers = [3]
The	expression	on	the	left	refers	to	the	index	3	item	in	the	sequence	called	
numbers.			It	refers	to	that	item	but	changes	nothing	(of	itself).		The	
statement	on	the	right	sets	the	variable	called	numbers	to	a	list	containing	a	
single	item	(the	number	3).

Page	8	of	12	

21. In Session 9, you implemented a Point class. Recall that a Point object has instance
variables x and y for its x and y coordinates

Consider the code snippets below. They are contrived examples with poor style but will
run without errors. For each, what does it print when main runs?

(Each is an
independent
problem.)

Suggestion:
Draw a box-
and-pointer
diagram to
solve this
problem, even
though the
problem does
not require you
to do so.

Prints: 11 12 Prints: [1, 2, 3]

 77 200 [888, 200, 300]

 77 0 [22, 200]

def main():
 p1 = Point(11, 12)
 p2 = Point(77, 88)
 p3 = foo(p1, p2)
 print(p1.x, p1.y)
 print(p2.x, p2.y)
 print(p3.x, p3.y)

def foo(p1, p2):
 p1 = Point(0, 0)
 p1.x = 100
 p2.y = 200
 p3 = Point(p2.x, p1.y)
 return p3

def main():
 a = [1, 2, 3]
 b = [100, 200, 300]
 c = foofoo(a, b)
 print(a)
 print(b)
 print(c)

def foofoo(a, b):
 a = [11, 22, 33]
 a[0] = 777
 b[0] = 888
 x = [a[1], b[1]]
 return x

Page	9	of	12	

22. In Session 9, you implemented a Point class. Recall that a Point object has instance
variables x and y for its x and y coordinates.

Here,	you	will	implement	a	portion	of	a	class	called			TwoPoints,	described	as	follows:

• The	TwoPoints	constructor	takes	2	arguments,	each	a	Point	object.	

• The	TwoPoints	class	has	a	method	called	swap().		It	swaps	the	two	points	that	a	
TwoPoints	object	has.	

• The	TwoPoints	class	has	a	method	called			number_of_swaps() that	returns	the	
number	of	times	the	TwoPoints	object	has	called	its			swaps() 	method.	

	

	

In	this	column,	write	code	that	would	TEST	
the	TwoPoints	class.	

	
p1 = Point(10, 20)
p2 = Point(88, 44)
tp = TwoPoints(p1, p2)
print('Expected:', p1, p2)
print('Actual: ', tp.p1, tp.p2)

tp.swap()
print('Expected:', p2, p1)
print('Actual: ', tp.p1, tp.p2)

tp.swap()
print('Expected:', p1, p2)
print('Actual: ', tp.p1, tp.p2)

print('Expected:', 2)
print('Actual: ',
 tp.number_of_swaps())		

	

Many	other	answers	are	possible	as	well.		All	
correct	answers	will	construct	at	least	one	
TwoPoints	object,	reference	its	instance	
variables,	call	swap	and	then	reference	the	
instance	variables	again,	and	call	
number_of_swaps,	checking	that	the	returned	
value	is	correct.	

	

	

In	this	column,	write	the	IMPLEMENTATION	of	
the	TwoPoints	class.	

	
class TwoPoints(object):

 def __init__(self, p1, p2):
 self.p1 = Point(p1.x, p1.y)
 self.p2 = Point(p2.x, p2.y)
 self.nswaps = 0

 def swap(self):
 temp = self.p1
 self.p1 = self.p2
 self.p2 = temp
 self.nswaps = self.nswaps + 1

 def number_of_swaps(self):

 return self.nswaps	

	

There	are	other	correct	answers	possible.			All	
correct	answers	will	set	instance	variables	to	
store	the	two	Point	objects	that	are	arguments	
for	__init__,	though	it	is	equally	correct	to	
clone	the	arguments	or	not	(the	specification	is	
ambiguous	on	that	issue).		All	correct	solutions	
will	have	an	instance	variable	for	the	number	of	
swaps,	initializing	it	in	__init__,	setting	it	in	
swap,	and	returning	it	in	number_of_swaps.	

	

	

Page	10	of	12	

23. In	Session	9,	you	implemented	a	Point	class.		Recall	that	a	Point	object	has	instance	
variables	x	and	y	for	its	x	and	y	coordinates.	

Consider	the	code	in	the	box	below.		On	the	next	page,	draw	the	box-and-pointer	diagram	
for	what	happens	when	main	runs.		Also	on	the	next	page,	show	what	the	code	would	print	
when	main	runs.	

	

	

	

	

	

	

	

	

	
		

	

	

	

	

	

	

	

	 	

def main():
 point1 = Point(8, 10)
 point2 = Point(20, 30)
 x = 405
 y = 33

 print('Before:', point1, point2, x, y)

 z = change(point1, point2, x, y)

 print('After:', point1, point2, x, y, z)

def change(point1, point2, x, a):
 print('Within 1:', point1, point2, x, a)
 point2.x = point1.x
 point2 = Point(5, 6)
 point1.y = point2.y
 x = 99
 point1.x = x
 a = 77

 print('Within 2:', point1, point2, x, a)

 return a

Page	11	of	12	

Draw	your	box-and-pointer	diagram	here:		
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Before:		The	RED	lines	reflect	the	execution	of	the	lines	in	main	before	the	call	to	function	
change.		Therefore,	what	gets	printed	BEFORE	the	call	to	change	is:		

Point(8, 10) Point(20, 30) 405 33

Within:		The	GREEN	lines	reflect	the	execution	of	the	call	to	function	change.		Thus	
what	gets	printed	at	Within	1:	is					Point(8, 10) Point(20, 30) 405 33	

WITHIN	the	call	to	change	(at	the	end	of	that	function,	i.e.,	when	Within	2:	is	printed)	is:	
Point(99, 6) Point(5, 6) 99 77

After:		The	BLUE	line	reflects	the	execution	of	the	return	from	change	and	the	assignment	to	z	
in	function	main.		Therefore,	what	gets	printed	AFTER	the	call	to	change	is:	

Point(99, 6) Point(8, 30) 405 33 77

405

 point1

 point2

 x

 y

 z

 point1

 point2

 x

 a

 x y

 x y

33

77

99

8 10
20 30

5 6

x
x

x

x

What	prints	when	main	runs?		
Assume	that	Point	objects	get	
printed	as	per	this	example:		
Point(8,	10).	

x

,main	

,change	

 x y

x

Page	12	of	12	

	

From	the	picture	on	the	previous	page,	we	see	that:	

What	prints	when	main	runs?	
Assume	that	Point	objects	get	printed	as	per	this	example:		Point(8,	10).	

Before:	 Point(8, 10) Point(20, 30) 405 33		

Within	1:				 	Point(8, 10) Point(20, 30) 405 33	
	
Within	2:	 Point(99, 6) Point(5, 6) 99 77

After:			 Point(99, 6) Point(8, 30) 405 33 77

