
Page	1	of	11	

Test 2 – Practice Problems for the Paper-and-Pencil portion

Note: the first 3 problems review important concepts from Test 1 about scope and lifetime.

1. Consider the code snippets defined below. They are contrived examples with poor style
but will run without errors. For each, what does it print when main runs? (Each is an
independent problem. Pay close attention to the order in which the statements are
executed.)

Prints: __________________________ Prints: ____________________________ Prints: _________________________

 __________________________ ____________________________ _________________________

 __________________________ ____________________________ _________________________

 __________________________ ____________________________ _________________________

def main():
 x = 5
 y = 3
 print('main 1', x, y)
 foo(x, y)
 print('main 2', x, y)

def foo(a, b):
 print('foo 1', a, b)
 a = 66
 b = 77
 x = 88
 y = 99
 print('foo 2', a, b,
 x, y)

def main():
 x = 5
 y = 3
 print('main 1', x, y)
 foo(x, y)
 print('main 2', x, y)

def foo(x, y):
 print('foo 1', x, y)
 a = 66
 b = 77
 x = 88
 y = 99
 print('foo 2', a, b,
 x, y)

def main():
 x = 5
 y = 3
 print('main 1', x, y)
 foo(y, x)
 print('main 2', x, y)

def foo(x, y):
 print('foo 1', x, y)
 a = 66
 b = 77
 x = 88
 y = 99
 print('foo 2', a, b,
 x, y)

Page	2	of	11	

2. Consider the code snippet to the right. Both print statements are wrong.

• Explain why the first print statement (in main) is wrong.

• Explain why the second print statement (in foo) is wrong.

def main():
 x = 5
 foo(x)
 print(z)

def foo(a):
 print(x)
 z = 100
 return z

Page	3	of	11	

3. Consider the code snippet below. It is a contrived example with poor style, but it will run
without errors. What does it print when it runs?

Write your answer in the box to the right of the code.

def main():
 a = alpha()

 print()
 b = beta()

 print()
 g = gamma()

 print()
 print("main!", a, b, g)

def alpha():
 print("Alpha!")
 return 7

def beta():
 print("Beta!")
 return 15 + alpha()

def gamma():
 print("Gamma!", alpha(), beta())
 return alpha() + beta() + alpha()

main()

Output:	

Page	4	of	11	

4. Consider the code snippet below. It is a
contrived example with poor style, but it
will run without errors. What does it
print when it runs?

Write your answer in the box to the right.

 b = [44]
 a = (50, 30, 60, 77)
 x = 3

 for k in range(len(a)):
 b = b + [a[x - k]]
 print(k, b)

 print('A.', a)
 print('B.', b)
 print('X.', x)

Output:	

Page	5	of	11	

5. Consider a function whose name is last_n_reversed that takes two arguments: a
string s and a nonnegative integer n. It returns a string that is the last n characters
of the string s, in reverse order of how they appear in s.

Here is a code snipped that illustrates a sample run of the function:

 my_string = 'Ada Lovelace'

 answer = last_n_reversed(my_string, 6)

 print(answer)

would print ecalev in the Console.

Write a complete implementation, including the header (def) line, of the above
last_n_reversed function.

6. Consider a function whose name is reverse_n that takes two arguments: a list s
and a nonnegative integer n that is less than half of the length of the list. It mutates
the list s by swapping the first n items in the list with the last n items in the list.

Here is a code snipped that illustrates a sample run of the function:

 my_list = [10, 64, 33, 20, 82, 90, 44, 50, 37, 100, 4]

 answer = reverse_n(my_list, 3)

 print(my_list)

would print [4, 100, 37, 20, 82, 90, 44, 50, 33, 64, 10] in the Console.

Write a complete implementation, including the header (def) line, of the above
reverse_n function.

Page	6	of	11	

7. Consider the following two candidate function definitions:	

	

	

 	

a. Which is “better”? Circle the better function.

b. Briefly explain why you circled the one you did.

	

	

	

	

	

	

8. True or false: Variables are REFERENCES to objects. True False (circle your choice)

9. True or false: Assignment (e.g. x = 100)
causes a variable to refer to an object. True False (circle your choice)

10. True or false: Function calls (e.g. foo(54, x))
also cause variables to refer to objects. True False (circle your choice)

11. Give one example of an object that is a container object:

12. Give one example of an object that is NOT a container object:

13. True or false: When an object is mutated, it no longer refers
to the same object to which it referred prior to the mutating. True False
 (circle your choice)

def foo():
 print('hello')

def foo(x):
 print(x)

Page	7	of	11	

14. Consider the following statements:

c1 = rg.Circle(zg.Point(200, 200), 25)
c2 = c1

At this point, how many rg.Circle objects have been constructed? 1 2
 (circle your choice)

15. Continuing the previous problem, consider an additional statement that follows the
preceding two statements:

c1.radius = 77

After the above statement executes, the variable c1 refers
to the same object to which it referred prior to this statement. True False
 (circle your choice)

16. Continuing the previous problems:

• What is the value of c1’s radius after the
statement in the previous problem executes? 25 77 (circle your choice)

• What is the value of c2’s radius after the
statement in the previous problem executes? 25 77 (circle your choice)

17. Which of the following two statements mutates an object? (Circle your choice.)

numbers1 = numbers2

numbers1[0] = numbers2[0]

18. Mutable objects are good because:

19. Explain briefly why mutable objects are dangerous.

20. What is the difference between the following two expressions?

numbers[3] numbers = [3]

Page	8	of	11	

21. In Session 9, you implemented a Point class. Recall that a Point object has instance
variables x and y for its x and y coordinates

Consider the code snippets below. They are contrived examples with poor style but will
run without errors. For each, what does it print when main runs?

(Each is an
independent
problem.)

Suggestion:
Draw a box-
and-pointer
diagram to
solve this
problem, even
though the
problem does
not require you
to do so.

Prints: _______________________________ Prints: ______________________________

_______________________________ _______________________________

_______________________________ _______________________________

def main():
 p1 = Point(11, 12)
 p2 = Point(77, 88)
 p3 = foo(p1, p2)
 print(p1.x, p1.y)
 print(p2.x, p2.y)
 print(p3.x, p3.y)

def foo(p1, p2):
 p1 = Point(0, 0)
 p1.x = 100
 p2.y = 200
 p3 = Point(p2.x, p1.y)
 return p3

def main():
 a = [1, 2, 3]
 b = [100, 200, 300]
 c = foofoo(a, b)
 print(a)
 print(b)
 print(c)

def foofoo(a, b):
 a = [11, 22, 33]
 a[0] = 777
 b[0] = 888
 x = [a[1], b[1]]
 return x

Page	9	of	11	

22. In Session 9, you implemented a Point class. Recall that a Point object has instance
variables x and y for its x and y coordinates.

Here,	you	will	implement	a	portion	of	a	class	called			TwoPoints,	described	as	follows:

• The	TwoPoints	constructor	takes	2	arguments,	each	a	Point	object.	

• The	TwoPoints	class	has	a	method	called	swap().		It	swaps	the	two	points	that	a	
TwoPoints	object	has.	

• The	TwoPoints	class	has	a	method	called			number_of_swaps() that	returns	the	
number	of	times	the	TwoPoints	object	has	called	its			swaps() 	method.	

	

In	this	column,	write	code	that	would	
TEST	the	TwoPoints	class.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

In	this	column,	write	the	
IMPLEMENTATION	of	the	TwoPoints	
class.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Page	10	of	11	

23. In	Session	9,	you	implemented	a	Point	class.		Recall	that	a	Point	object	has	instance	
variables	x	and	y	for	its	x	and	y	coordinates.	

Consider	the	code	in	the	box	below.		On	the	next	page,	draw	the	box-and-pointer	diagram	
for	what	happens	when	main	runs.		Also	on	the	next	page,	show	what	the	code	would	print	
when	main	runs.	

	

	

	

	

	

	

	

	

	
		

	

	

	

	

	

	

	

	 	

def main():
 point1 = Point(8, 10)
 point2 = Point(20, 30)
 x = 405
 y = 33

 print('Before:', point1, point2, x, y)

 z = change(point1, point2, x, y)

 print('After:', point1, point2, x, y, z)

def change(point1, point2, x, a):
 print('Within 1:', point1, point2, x, a)
 point2.x = point1.x
 point2 = Point(5, 6)
 point1.y = point2.y
 x = 99
 point1.x = x
 a = 77

 print('Within 2:', point1, point2, x, a)

 return a

Page	11	of	11	

Draw	your	box-and-pointer	diagram	here:	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

What	prints	when	main	runs?	
Assume	that	Point	objects	get	printed	as	per	this	example:		Point(8,	10).	

Before:		___	

Within	1:		__	

Within	2:		__	

After:			__	

