Test 2 – Practice Problems for the Paper-and-Pencil portion
Note: the first 3 problems review important concepts from Test 1 about scope and lifetime.
1. Consider the code snippets defined below. They are contrived examples with poor style but will run without errors. For each, what does it print when main runs? (Each is an independent problem. Pay close attention to the order in which the statements are executed.)def main():
 x = 5
 y = 3
 print('main 1', x, y)
 foo(y, x)
 print('main 2', x, y)

def foo(x, y):
 print('foo 1', x, y)
 a = 66
 b = 77
 x = 88
 y = 99
 print('foo 2', a, b,
 x, y)
def main():
 x = 5
 y = 3
 print('main 1', x, y)
 foo(x, y)
 print('main 2', x, y)

def foo(x, y):
 print('foo 1', x, y)
 a = 66
 b = 77
 x = 88
 y = 99
 print('foo 2', a, b,
 x, y)
def main():
 x = 5
 y = 3
 print('main 1', x, y)
 foo(x, y)
 print('main 2', x, y)

def foo(a, b):
 print('foo 1', a, b)
 a = 66
 b = 77
 x = 88
 y = 99
 print('foo 2', a, b,
 x, y)

Prints: __________________________	Prints: ____________________________ Prints: _________________________
 __________________________	 ____________________________ _________________________
 __________________________	 ____________________________ _________________________
 __________________________	 ____________________________ _________________________
2. Consider the code snippet to the right. Both print statements are wrong.def main():
 x = 5
 foo(x)
 print(z)

def foo(a):
 print(x)
 z = 100
 return z

· Explain why the first print statement (in main) is wrong.

· Explain why the second print statement (in foo) is wrong.

3.
Consider the code snippet below. It is a contrived example with poor style, but it will run without errors. What does it print when it runs?
Write your answer in the box to the right of the code. def main():
 a = alpha()

 print()
 b = beta()

 print()
 g = gamma()

 print()
 print("main!", a, b, g)

def alpha():
 print("Alpha!")
 return 7

def beta():
 print("Beta!")
 return 15 + alpha()

def gamma():
 print("Gamma!", alpha(), beta())
 return alpha() + beta() + alpha()

main()
Output:

4. Consider the code snippet below. It is a contrived example with poor style, but it will run without errors. What does it print when it runs?Output:

Write your answer in the box to the right. b = [44]
 a = (50, 30, 60, 77)
 x = 3

 for k in range(len(a)):
 b = b + [a[x - k]]
 print(k, b)

 print('A.', a)
 print('B.', b)
 print('X.', x)

5. Consider a function whose name is last_n_reversed that takes two arguments: a string s and a nonnegative integer n. It returns a string that is the last n characters of the string s, in reverse order of how they appear in s.
Here is a code snipped that illustrates a sample run of the function:
 my_string = 'Ada Lovelace'
 answer = last_n_reversed(my_string, 6)
 print(answer)
would print ecalev in the Console.
Write a complete implementation, including the header (def) line, of the above last_n_reversed function.

6. Consider a function whose name is reverse_n that takes two arguments: a list s and a nonnegative integer n that is less than half of the length of the list. It mutates the list s by swapping the first n items in the list with the last n items in the list.
Here is a code snipped that illustrates a sample run of the function:
 my_list = [10, 64, 33, 20, 82, 90, 44, 50, 37, 100, 4]
 answer = reverse_n(my_list, 3)
 print(my_list)
would print [4, 100, 37, 20, 82, 90, 44, 50, 33, 64, 10] in the Console.
Write a complete implementation, including the header (def) line, of the above reverse_n function.

7. Consider the following two candidate function definitions:

def foo(x):
 print(x)
def foo():
 print('hello')

[bookmark: _GoBack]
a. Which is “better”? Circle the better function.
b. Briefly explain why you circled the one you did.

8. True or false: Variables are REFERENCES to objects. True False (circle your choice)
9. True or false: Assignment (e.g. x = 100)
causes a variable to refer to an object. 			True False (circle your choice)
10. True or false: Function calls (e.g. foo(54, x))
also cause variables to refer to objects.			True False (circle your choice)
11. Give one example of an object that is a container object:

12. Give one example of an object that is NOT a container object:

13. True or false: When an object is mutated, it no longer refers
to the same object to which it referred prior to the mutating.	True False
 (circle your choice)

14. Consider the following statements:
c1 = rg.Circle(zg.Point(200, 200), 25)
c2 = c1
At this point, how many rg.Circle objects have been constructed?	 1	2
 (circle your choice)
15. Continuing the previous problem, consider an additional statement that follows the preceding two statements:
c1.radius = 77
After the above statement executes, the variable c1 refers
to the same object to which it referred prior to this statement.	True False
 (circle your choice)
16. Continuing the previous problems:
· What is the value of c1’s radius after the
statement in the previous problem executes? 	 25	77	(circle your choice)
· What is the value of c2’s radius after the
statement in the previous problem executes? 	 25	77	(circle your choice)
17. Which of the following two statements mutates an object? (Circle your choice.)
numbers1 = numbers2
numbers1[0] = numbers2[0]

18. Mutable objects are good because:

19. Explain briefly why mutable objects are dangerous.

20. What is the difference between the following two expressions?
numbers[3]		numbers = [3]

21. In Session 9, you implemented a Point class. Recall that a Point object has instance variables x and y for its x and y coordinates
Consider the code snippets below. They are contrived examples with poor style but will run without errors. For each, what does it print when main runs?
(Each is an independent problem.)def main():
 a = [1, 2, 3]
 b = [100, 200, 300]
 c = foofoo(a, b)
 print(a)
 print(b)
 print(c)

def foofoo(a, b):
 a = [11, 22, 33]
 a[0] = 777
 b[0] = 888
 x = [a[1], b[1]]
 return x
def main():
 p1 = Point(11, 12)
 p2 = Point(77, 88)
 p3 = foo(p1, p2)
 print(p1.x, p1.y)
 print(p2.x, p2.y)
 print(p3.x, p3.y)

def foo(p1, p2):
 p1 = Point(0, 0)
 p1.x = 100
 p2.y = 200
 p3 = Point(p2.x, p1.y)
 return p3

Suggestion: Draw a box-and-pointer diagram to solve this problem, even though the problem does not require you to do so.

Prints:	_______________________________		Prints:	 ______________________________
_______________________________			_______________________________
_______________________________			_______________________________

22. In Session 9, you implemented a Point class. Recall that a Point object has instance variables x and y for its x and y coordinates.
Here, you will implement a portion of a class called TwoPoints, described as follows:
· The TwoPoints constructor takes 2 arguments, each a Point object.
· The TwoPoints class has a method called swap(). It swaps the two points that a TwoPoints object has.
· The TwoPoints class has a method called number_of_swaps() that returns the number of times the TwoPoints object has called its swaps() method.

In this column, write code that would TEST the TwoPoints class.

In this column, write the IMPLEMENTATION of the TwoPoints class.

23. In Session 9, you implemented a Point class. Recall that a Point object has instance variables x and y for its x and y coordinates.
Consider the code in the box below. On the next page, draw the box-and-pointer diagram for what happens when main runs. Also on the next page, show what the code would print when main runs.
def main():
 point1 = Point(8, 10)
 point2 = Point(20, 30)
 x = 405
 y = 33

 print('Before:', point1, point2, x, y)

 z = change(point1, point2, x, y)

 print('After:', point1, point2, x, y, z)

def change(point1, point2, x, a):
 print('Within 1:', point1, point2, x, a)
 point2.x = point1.x
 point2 = Point(5, 6)
 point1.y = point2.y
 x = 99
 point1.x = x
 a = 77

 print('Within 2:', point1, point2, x, a)

 return a

Draw your box-and-pointer diagram here:

What prints when main runs?
Assume that Point objects get printed as per this example: Point(8, 10).
Before: ___
Within 1: __
Within 2: __
After: __

