

CSSE 120 – Introduction to Software Development Practice for Test 1 paper-and-pencil part

Page 1 of 7

Name: ______ SOLUTION ______________
Use this quiz to help you prepare for the Paper-and-Pencil portion of Test 1. Complete it
electronically or print it and complete it by hand, your choice. Answer all questions. Make
additional notes as desired. Not sure of an answer? Ask your instructor to explain in class
and revise as needed then.

Throughout, where you are asked to “circle your choice”, you can circle or underline it (whichever you prefer).

Throughout, assume that there are no global variables (if you happen to know what they are).

1. Consider the secret function defined to the right.
What are the values of:

a. secret(2) _______ 9 __________

b. secret(secret(2)) _____ 100 _______

2. Consider the mystery function defined to the
right. What are the values of:

a. mystery(5, 2) ______ 11 ____

b. mystery(2, 5) ______ 17 ____

c. x = 2
y = 5

mystery(x, y) ______ 17 ____

d. x = 2
y = 5

mystery(y, x) ______ 11 ____

3. Consider the code snippet to the right. Explain briefly why there is a
red X beside Line 3.

The variable n in main is undefined. That is, it has no value when Line 3 executes.

The presence of a variable n in foo is irrelevant. Names defined inside one function are
independent of names defined in other functions.

4. Consider the code snippet to the right. Explain briefly why there is a
red X beside Line 7.

The variable a in foo is undefined. That is, it has no value when
Line 7 executes.

The presence of a variable a in main is irrelevant. Names defined
inside one function are independent of names defined in other functions.

def secret(x):
 y = (x + 1) ** 2
 return y

def mystery(x, y):
 result = x + (3 * y)
 return result

CSSE 120 – Introduction to Software Development Practice for Test 1 paper-and-pencil part

Page 2 of 7

5. Consider the code snippets defined below. They are contrived examples with poor style
but will run. For each, what does it print when main runs?

(Each is an independent problem. Pay close attention to the order in which the statements are executed.)

Prints: ___ 5 ______ _______ 10 _________ ______ 5 ______

 ___ 5 ______ _______ 1000 _______ ______ 125 ____

6. What is the value of each of the following expressions?

17 // 4 = 4 Hint: This is a WHOLE number (i.e., integer).

17 % 4 = 1 Hint: This is the REMAINDER from 17 // 4.

3 / 4 = 0.75

7 % 2 = 1 Aside: If x % 2 == 0, then x is EVEN.
 If x % 2 == 1, then x is ODD.

7 ** 2 = 49

'fun' + 'ny' = 'funny'

'hot' * 5 = 'hothothothothot'

'fun' + 3 This is not a legal expression. It breaks when it runs.

10 ^ 2 This does NOT evaluate to 100. The ^ (caret) symbol does
NOT mean exponentiation (raising to a power) in Python. It has an entirely different
meaning that is not important to our current work.1 We won’t ask you what ^ means
on the test, but it is important to know that ^ is NOT exponentiation.

1 But just in case you are curious, here is what it does mean: bitwise exclusive-OR. Since 10 is 0110 in
binary and 2 is 0010 in binary and 0110 bitwise exclusive-OR’ed with 0010 is 0100, which is 8 in
decimal, 10 ^ 2 evaluates to 8.

def main():
 x = 5
 foo(x)
 print(x)

def foo(x):
 print(x)
 return x ** 3

def main():
 x = 5
 y = foo(x)
 print(y)

def foo(x):
 x = 10
 print(x)
 return x ** 3

def main():
 x = 5
 x = foo(x)
 print(x)

def foo(x):
 print(x)
 return x ** 3

CSSE 120 – Introduction to Software Development Practice for Test 1 paper-and-pencil part

Page 3 of 7

7. For each of the 3 code snippets below, what does it print?
(Write each answer directly below its code snippet.)

Hint: Solve problems like this by make a table with the variables, showing the places
where their values change. Here is an example of a table appropriate for the 3rd
(rightmost) problem. It was made by tracing the code by hand, starting from line 1 of
the table (which came from the statement b = 0) and continuing downward from
there as the by-hand trace continues.

 k b

 0

 0

1 1

2

3

4 2

1 0 10 0 0

3 2 12 b is: 1

5 4 16 1 1

7 6 22 2 1

 22 3 1

 b is: 2

 4 2

 2

for j in range(4):
 print((j * 2) + 1)

a = 10
for k in range(8):
 if k % 2 == 0:
 a = a + k
 print(k, a)
print(a)

b = 0
for k in range(5):
 if (k + 4) % 3 == 2:
 b = b + 1
 print('b is:', b)
 print(k, b)
print(b)

CSSE 120 – Introduction to Software Development Practice for Test 1 paper-and-pencil part

Page 4 of 7

8. What gets printed when main is called in the program
shown to the right? (Pay close attention to the order in
which the statements are executed. Write the output in a
column to the left of the program.)

9. True or False: As a user of a function (that is, as someone who will call the function),
you don’t need to know how the function is implemented;
you just need to know the specification of the function. True False (circle your choice)

10. List two reasons why functions are useful and important.

Reason 1: They help organize the code, which makes it easier to get the code correct
when writing it and to maintain that code’s correctness as changes are made later in
the lifetime of the software.

Reason 2: They allow for code re-use, by allowing the function to be called multiple
times with different values for the parameters.

def main():
 a = 2
 b = 3

 foo1()
 print(a, b)

 foo2(a, b)
 print(a, b)

 foo3(a, b)
 print(a, b)

def foo1():
 a = 88
 b = 99

def foo2(a, b):
 a = 400
 b = 500

def foo3(x, y):
 x = 44
 y = 55

Output

2 3

2 3

2 3

CSSE 120 – Introduction to Software Development Practice for Test 1 paper-and-pencil part

Page 5 of 7

11. Consider the code snippet below. It is a contrived example with poor style, but it will run
without errors. What does it print when it runs?

Write your answer in the box to the
right of the code.

Here is an explanation of what
happens in the above:

1. The definitions are all read, then main is called at the bottom of the code.
2. main calls one.
3. one prints One! and then calls two.
4. two prints Two! and then returns 1. (The print('Done!') statement is never

reached, since a return statement really leaves the function, returning to its caller.)
5. Control returns to one, where the returned 1 is added to the 1 in return 1 + two(),

yielding 2, so 2 is returned from the one function, back to main.
6. main ignores the returned value from one and calls two.
7. two prints Two! and returns 1. (Again, the print('Done') is never reached.)
8. main ignores the returned value from two and calls three.
9. three calls two. two prints Two! and returns 1 back to three.
10. three calls one. one prints One!, calls two which prints Two! and returns 1 to

one, one adds the returned 1 to 1 and returns 2 to three.
11. three has now computed the values of the 3 arguments to its print statement and

prints them: Three! 1 2.

def main():
 one()
 two()
 three()

def one():
 print('One!')
 return 1 + two()

def two():
 print('Two!')
 return 1
 print('Done!')

def three():
 print('Three!', two(), one())

main()

Output:

One!

Two!

Two!

Two!

One!

Two!

Three! 1 2

CSSE 120 – Introduction to Software Development Practice for Test 1 paper-and-pencil part

Page 6 of 7

12. Does the following function meet its specification? If not, why not?

No – it does NOT meet its specification.

Its specification says to RETURN the answer, not PRINT it.

13. Does the following function meet its specification? If not, why not?

No – it does NOT meet its specification.

Its specification does NOT say to PRINT anything, so doing so violates the
specification. Printing is a SIDE-EFFECT – a function must have no side-
effects beyond what the specification specifies.

14. Does the following function meet its specification? If not, why not?

No – it does NOT meet its
specification.

Its specification says to TEST
the function. The code CALLS
the function (good!), but does
nothing with the returned
value. As such, it does not
TEST whether the returned

value is correct. (This explanation continues on the next page)

def get_number(x):
 """
 Returns x squared plus x cubed, for the given x.
 For example, if x is 5, returns (5 ** 2) + (5 ** 3), which is 150.
 """
 answer = (x ** 2) + (x ** 3)
 print(answer)

def get_number(x):
 """
 Returns x squared plus x cubed, for the given x.
 For example, if x is 5, returns (5 ** 2) + (5 ** 3), which is 150.
 """
 answer = (x ** 2) + (x ** 3)
 print(answer)
 return answer

def test_get_number(x):
 """ Tests the get_number function. """
 answer1 = get_number(5)
 answer2 = get_number(1)
 answer3 = get_number(2)

CSSE 120 – Introduction to Software Development Practice for Test 1 paper-and-pencil part

Page 7 of 7

Testing the returned value requires either printing it (so that the human user
can check whether or not the returned value is correct) or otherwise
checking the returned value (e.g., by comparing the returned value to the
correct answer and printing an appropriate message as a result).

Furthermore, we will also require that you print the EXPECTED value to be
returned, so that you can demonstrate that you really did have something to
check the answer against.

Finally, if you simply RUN your function and THEN provide the “expected
value” as the value that your function produces, that is NOT A TEST and you
will get NO CREDIT for doing so.

You MUST have tests that are either GIVEN to you by us (possibly as an
example in the specification, possibly in the testing code) or COMPUTED BY
HAND by you.

15. Consider a function whose name is print_string that takes two arguments as in
this example:

print_string('Robots rule!', 4)

The function should print the given string the given number of times. So, the above
function call should produce this output:

Robots rule!

Robots rule!

Robots rule!

Robots rule!

Write (in the space to the right)
a complete implementation,
including the header (def) line,
of the above print_string function.

A better answer might choose better names for s and n (e.g. string_to_print and
times_to_print), but the answer above is acceptable in this context.

Answer:

def print_string(s, n):

 for k in range(n):

 print(s)

	Name: ______ SOLUTION ______________
	Use this quiz to help you prepare for the Paper-and-Pencil portion of Test 1. Complete it electronically or print it and complete it by hand, your choice. Answer all questions. Make additional notes as desired. Not sure of an answer? Ask your ins...
	Throughout, where you are asked to “circle your choice”, you can circle or underline it (whichever you prefer).
	Throughout, assume that there are no global variables (if you happen to know what they are).

