
 Errors, Exceptions and try/except:

The following is an edited version of Sections 8.1 through 8.4 of
the Python Manual at:

https://docs.python.org/3.5/tutorial/errors.html

You have seen lots of error messages in the course so far.
There are (at least) two distinguishable kinds of
errors: syntax errors and exceptions.

8.1. Syntax Errors

Syntax errors, also known as parsing errors or compile-
time errors, are perhaps the most common kind of
complaint you get while you are still learning Python:

>>> while True print('Hello world')
 File "<stdin>", line 1, in ?
 while True print('Hello world')
 ^
SyntaxError: invalid syntax

The parser repeats the offending line and displays a little
‘arrow’ pointing at the earliest point in the line where the
error was detected. The error is caused by (or at least
detected at) the token preceding the arrow: in the example,
the error is detected at the function print(), since a colon
(':') is missing before it. File name and line number are
printed so you know where to look in case the input came
from a script.

8.2. Exceptions

Even if a statement or expression is syntactically correct, it
may cause an error when an attempt is made to execute it.
Errors detected during execution are called exceptions and
are not unconditionally fatal: you will soon learn how to
handle them in Python programs. Most exceptions are not
handled by programs, however, and result in error
messages printed on the Console. For example, when the
following program runs:

It breaks on the line:

my_list[3]

because the list has only 3 items in it, so trying to access the
item at index 3 is past the end of the list. This causes the
following to get printed on the Console:

def main():
example1_IndexError()

def example1_IndexError():
my_list = [16, 209, 33]
my_list[3]

main()

https://docs.python.org/3.5/tutorial/errors.html
https://docs.python.org/3.5/library/functions.html#print

Exceptions come in different types, and the type is printed
as the first part of the message: the type in this example
is IndexError (circled in black in the example) – a particular
kind of Exception. There are lots of different built-in
Exception types, including ZeroDivisionError, NameError
and TypeError. A complete list of them is in Section 5.2 of:

https://docs.python.org/3/library/exceptions.html

Visit that page now and skim section 5.2 in it to get a sense
of the various built-in Exception types. You will see only
built-in Exceptions in this course; user-defined Exceptions
are a follow-up topic to which we won’t get.

The words that follow the type of the Exception are words
that describe the Exception in more detail. Here are some
examples of the words that some Exception types use:

IndexError: list index out of range

ZeroDivisionError: division by zero
NameError: name 'spam' is not defined

TypeError: Can't convert 'int' object to str
implicitly

The words for each Exception type can use the specifics of
what caused the Exception. For example, the TypeError
exception is saying that on the line that broke, there is an
object of type int in that line to which the code tried to
apply str implicitly. It takes practice to decipher such
details; you will get such practice during a forthcoming in-
class project.

Traceback (most recent call last):

 File "C:\EclipseWorkspaces\csse120-
development\Session19_Input_Files_Exc
eptions\src\m0_examples_of_exceptions
.py", line 11, in <module>

 main()

 File "C:\EclipseWorkspaces\csse120-
development\Session19_Input_Files_Exc
eptions\src\m0_examples_of_exceptions
.py", line 3, in main

 example1_IndexError()

 File "C:\EclipseWorkspaces\csse120-
development\Session19_Input_Files_Exc
eptions\src\m0_examples_of_exceptions
.py", line 9, in example1_IndexError

 my_list[3]

IndexError: list index out of range

The last line of the error message indicates what
happened, that is, what event occurred that the
program could not handle. When such an event
occurs, the information about what happened is
stored in an object of type Exception.

https://docs.python.org/3.5/library/exceptions.html#ZeroDivisionError
https://docs.python.org/3.5/library/exceptions.html#ZeroDivisionError
https://docs.python.org/3.5/library/exceptions.html#NameError
https://docs.python.org/3.5/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html

The preceding part of the error message shows the context
where the exception happened, in the form of a stack
traceback: a list of the function/method calls that led to the
line at which the Exception occurred. In the example we
are using (repeated to the right for your convenience, this
time with line numbers for the code):

1. The program started on line 9 of the program:

main()

The traceback shows that line and provides a link (in
blue) to that line.

2. At line 2 of the program, main called the next
function that led to the exception:

example1_IndexError()

3. The exception occurred inside that function at line 9
of the program:

my_list[3]

In general, the stack traceback shows the sequence of
function calls that lead directly to the line of code that
generated the Exception.

Traceback (most recent call last):

 File "C:\EclipseWorkspaces\csse120-
development\Session19_Input_Files_Exc
eptions\src\m0_examples_of_exceptions
.py", line 9, in <module>

 main()

 File "C:\EclipseWorkspaces\csse120-
development\Session19_Input_Files_Exc
eptions\src\m0_examples_of_exceptions
.py", line 2, in main

 example1_IndexError()

 File "C:\EclipseWorkspaces\csse120-
development\Session19_Input_Files_Exc
eptions\src\m0_examples_of_exceptions
.py", line 9, in example1_IndexError

 my_list[3]

IndexError: list index out of range

Always use the blue links to get to
the lines in a stack traceback; then
you can’t go wrong.

8.3. Handling Exceptions
It is possible to write programs that handle selected
exceptions, using try .. except statements (called
try/catch in Java and some other languages). Here is the
basic idea, with details to follow:

The code in the try block executes.

1. If all happens normally, when execution reaches the
end of the try block, the except block is skipped
and execution continue below the try/except (at
more-stuff in the above).

2. If ANY statement in the try block causes an
Exception to occur, execution jumps to the except
block and does whatever is there. Execution then
continues with the more-stuff.

There are many reasons why programmers handle some of
the possible exceptions in their code. For Python, one
reason is that Python philosophically prefers EAFP (“Easier
to Ask for Forgiveness than Permission”) to LBYL (“Look
Before You Leap”). So instead of a bunch of IF statements
that check that the stuff WILL work fine (LBYL), the code
just TRIES the stuff, and if it breaks, it deals with it then in
the except block (EAFP).

Here is an example in which the except block prints an
error message to the user, then asks the user to try again:

If the user enters a number (as hoped-for and expected),
the call to the float function works fine, then the program
encounters the break statement, then it leaves the while
loop and continues on its merry way. If the user enters
something other than a number (e.g. 'five'), execution
jumps to the except class, which prints a message to the
user. Execution then continues inside the loop, thus giving
the user the opportunity to try again to enter a number.

try:
 <stuff that normally works fine>
 <stuff that normally works fine>
 ...
except Exception:
 <whatever you want to happen
 when something in try breaks>

<more stuff>
<more stuff>
 ...

while True:
 try:
 x = float(input('Enter a number: '))
 break
 except ValueError:
 print('Oops! That was NOT a number!')
 print('Try again...')

<do stuff here with x (the number) >

In the previous example, the programmer chose to handle
the ValueError that results when the float function is
given a non-number. In this next example, the programmer
chose to handle any error that results if the program tries
to open and read from a file that it can’t (perhaps because
the file does not exist).

If the file is opened successfully, execution skips the
except block and continues normally. If the file could not
be opened, execution jumps to the except block and:

• prints a message that the programmer thinks would
be helpful to whomever is running this program, and

• “raises” the Exception again, thus “passing” the same
Exception to the calling code (more on this shortly).

The above example does not deal with the file-handling in
the best way but it illustrates the general idea of printing
(or logging) some information “on the way” to the code
that actually handles the Exception. Which brings us to …

… how Exceptions really work. When an Exception occurs:

1. The interpreter (which is running the program) looks in
the last-executed function (i.e., the one that was
executing when the program broke) for a try/except
clause that encloses the statement that broke. If it
finds one, execution continues in the except clause of
that try/except.

2. If the interpreter does not find an enclosing
try/except in the last-executed function, the
interpreter backs up to the line of code that called the
last-executed function, in the second-to-last-executed
function. The interpreter looks in that function for a
try/except clause that encloses that line. If it finds
one, execution continues in the except clause of that
try/except.

3. If the interpreter does not find an enclosing
try/except in the second-to-last-executed function, it
proceeds to the third-to-last-executed function and
proceeds similarly. And so forth.

4. If this process continues all the way back to the line that
called main and no try/except is found along the way,
the interpreter prints a message per the Exception on
the Console. That is what you have been seeing in YOUR
programs!

try:
 filename = 'some_file.txt'
 f = open(filename, 'r')
 text = f.read()
 # <do stuff with the text in the file>
 f.close()

except OSError:
 print('Could not open & read the file:')
 print(filename)
 print('Check whether you are')
 print('in the right folder!')
 raise

	8.1. Syntax Errors
	8.2. Exceptions
	8.3. Handling Exceptions

