
Page 1 of 7

Test 3 – SOLUTION to Practice Problems for the Paper-and-
Pencil portion
1. Consider the two functions below and the user input shown below that.

User enters:

 30

 5

 zero

 4

 0

Questions are on the next page.

def sum_numbers1():
 total = 0
 while True:
 number = float(input('Enter a number (0 to quit): '))
 if number == 0:
 break
 total = total + number

 return total

def sum_numbers2():
 total = 0
 while True:
 try:
 number = float(input('Enter a number (0 to quit): '))
 if number == 0:
 break
 total = total + number
 except ValueError:
 print(' You entered a string that is NOT a number.')
 print(' Try again.')

 return total

Page 2 of 7

a. What happens if a program calls sum_numbers1 and the user attempts
to enter the user-input shown on the previous page?

Answer: After the user enters zero the call to the float function
raises an Exception because the float function cannot convert the
string zero to a floating point number. (FWIW, it is a ValueError
exception.)

Execution leaves the sum_numbers1 function at that point. The caller
then has the opportunity to handle the Exception. If it does not do so,
the caller’s caller has the opportunity to hand the Exception. And so
forth until either a caller handles the Exception or we reach the point at
which main is called.

If we reach the point at which main is called, the program displays (in
red, on the Console) the sequence of calls that led to the Exception
being raised and the printed form of the Exception. (FWIW, that
sequence of calls is called the Traceback or Stack Trace).

b. What happens if a program calls sum_numbers2 and the user attempts
to enter the user-input shown on the previous page?

Answer: As in part (a), after the user enters zero the call to the
float function raises an Exception because the float function
cannot convert the string zero to a floating point number. (FWIW, it
is a ValueError exception.)

This time, the sum_numbers1 function “catches” the Exception in
the except clause of the try/except expression. The code in the
except clause prints a message to the user and the while loop
continues.

The next user input (4) is added to the total. The user input after that
causes the while loop to finish and the function then returns 39.

c. Why might it be better for the program to call sum_numbers2 instead of
sum_numbers1?

Answer: The sum_numbers2 function allows the user to make mistakes and
recover. Note that the sum_numbers2 function does not catch ALL user
mistakes that are possible. For example, if the user types 30 when she meant

Page 3 of 7

31, or if the user enters 0 before she intended to finish entering numbers,
sum_numbers2 would not catch those errors.

2. Consider the following statements:

c1 = rg.Circle(zg.Point(200, 200), 25)
c2 = c1

At this point, how many rg.Circle objects have been constructed? 1 2
 (circle your choice)

3. Continuing the previous problem, consider an additional statement that follows the
preceding two statements:

c1.radius = 77

After the above statement executes, the variable c1 refers
to the same object to which it referred prior to this statement. True False
 (circle your choice)

4. Continuing the previous problems:

• What is the value of c1’s radius after the
statement in the previous problem executes? 25 77 (circle your choice)

• What is the value of c2’s radius after the
statement in the previous problem executes? 25 77 (circle your choice)

5. Which of the following two statements mutates an object? (Circle your choice.)

numbers1 = numbers2

numbers1[0] = numbers2[0]

6. Mutable objects are good because:

Answer: They allow for efficient use of space and hence time – passing a
mutable object to a function allows the function to change the “insides” of
the object without having to take the space and time to make a copy of the
object. As such, it is an efficient way to send information back to the caller.

7. Explain briefly why mutable objects are dangerous.

Answer: When the caller sends an object to a function, the caller may not
expect the function to modify the object in any way. If the function does an
unexpected mutation, that may cause the caller to fail. If the object is
immutable, no such danger exists – the caller can be certain that the object
is unchanged when the function returns control to the caller.

Page 4 of 7

8. What is the difference between the following two expressions?

numbers[3] numbers = [3]

Answer: The expression on the left refers to the index 3 item in the
sequence called numbers. It refers to that item but changes nothing (of
itself). The statement on the right sets the variable called numbers to a
list containing a single item (the number 3).

9. Consider the two functions below.

Suppose that the main program has a list named my_list that contains 10,000
numbers.

Suppose further that the program makes two function calls:

• f1(my_list)

• f2(my_list)

Which function call will take longer to execute? (Circle your choice.) Why?

Answer: The call to f1 copies all 10,000 items in the argument (but with the
last item doubled). The call to f2 does no copying. Instead, it accesses the
last item in the argument and modifies only that single item. As such, call to
f2 changes only 1 item, while the call to f1 constructs 10,000 items – the
latter takes much more time than the former.

def f1(list_of_numbers):
 """
 RETURNs a new list that is the same as the given list of numbers
 except that the last item in the list is doubled. For example, if
 the given list is [4, 2, 8, 5], this function returns [4, 2, 8, 10].
 """

def f2(list_of_numbers):
 """
 MUTATEs the given list of numbers by doubling the last item
 in the list. For example, if the given list is [4, 2, 8, 5],
 then this function mutates the list to [4, 2, 8, 10].
 """

Page 5 of 7

10. In the space below, write an implementation for the function whose specification is
shown in the following box. Do NOT use your computer for this (or for any other of
these paper-and-pencil problems).

def shape(r):
 """
 Prints shapes per the following examples:
 When r = 5: When r = 3
 *****5 ***3
 ****54 **32
 ***543 *321
 **5432
 *54321
 Precondition: r is a non-negative integer.
 For purposes of "lining up", assume r is a single digit.
 """

One answer:

 for k in range(r):
 for j in range(r - k):
 print('*', end='')
 for j in range(k + 1):
 print(r - j, end='')
 print()

Page 6 of 7

11. Consider the code snippet below. It is a contrived
example with poor style, but it will run without errors.
What does it print when main runs?

Write your answer in the box to the right.

12. Consider the code snippet below. It is a contrived
example with poor style, but it will run without errors.
What does it print when main runs?

Write your answer in the box to the left.

def main():
 for j in range(5):
 for k in range(j):
 print(j, k)

Output:
(I have put extra blank lines in this
solution to make it more readable.)

1 0

2 0

2 1

3 0

3 1

3 2

4 0

4 1

4 2

4 3

def main():
 for j in range(5):
 print('here')
 for k in range(1, j - 1):
 print(j, k)

 print('there')
 for k in range(2, j + 1):
 print(j, k)

Output:
(I have put extra blank lines in this
solution to make it more readable.)

here

there

here

there

here

there

2 2

here

3 1

there

3 2

3 3

here

4 1

4 2

there

4 2

4 3

4 4

Page 7 of 7

13. Consider the code snippet in the box below. It is a contrived
example with poor style, but it will run without errors. What
does it print when main runs?

Write your answer in the box shown to the right of the code.

def main():
 seq = [('one', 'two', 'three', 'four'),
 ('five', 'six', 'seven'),
 ('eight', 'nine', 'ten'),
 ['is this ok?'],
 (),
 ('123456', '1234')]

 for k in range(len(seq)):
 for j in range(len(seq[k])):
 print(j, k)
 if len(seq[k][j]) > 3:
 print(seq[k][j], len(seq[k][j]))

Output:
(I have put extra blank spaces
and lines in this solution to make
it more readable.)

0 0
1 0
2 0
three 5
3 0
four 4

0 1
five 4
1 1
2 1
seven 5

0 2
eight 5
1 2
nine 4
2 2

0 3
is this ok? 11

0 5
123456 6
1 5
1234 4

