In many programs, you need to collect large numbers of
values. In Python, you use the list structure for this purpose.
A list is a container that stores a collection of elements
that are arranged in a linear or sequential order. Lists can
automatically grow to any desired size as new items are
added and shrink as items are removed. In this chapter, you
will learn about lists and several common algorithms for
processing them.

6.1 Basic Properties of Lists

Alist is a container
that stores a
sequence of values.

278

We start this chapter by introducing the 1ist data type. Lists are the fundamental
mechanism in Python for collecting multiple values. In the following sections, you
will learn how to create lists and how to access list elements.

6.1.1 Creating Lists

Suppose you write a program that reads a sequence of values and prints out the
sequence, marking the largest value, like this:)

32
54
67.5

115 <= largest value
44.5

100

65

You do not know which value to mark as the largest one until you have seen them all.
After all, the last value might be the largest one. Therefore, the program must first
store all values before it can print them.

Could you simply store each value in a separate variable? If you know that there
are ten values, then you could store the values in ten variables valuel, value2, value3, ...,
valuel0. However, such a sequence of variables is not very practical to use. You would
have to write quite a bit of code ten times, once for each of the variables. In Python, a
list is a much better choice for storing a sequence of values.

Here we create a list and specify the initial values that are to be stored in the new
list (see Figure 1):

values = [32, 54, 67.5, 29, 35, 80, 115, 44.5, 100, 65] o

The square brackets indicate that we are creating a list. The items are stored in the
order they are provided. You will want to store the list in a variable so that you can
access it later.

tal
ou

the

all.

rst

ere

1ld

1;ia

ew

the

can

Each individual
element in a list

is accessed by an
integer i, using the
notation fist[i].

Syntax 6.1

6.1 BasicProperties of Lists 279

7] ;
32 [0} 32
values = ——/ 54 values = —/— [11 54

67.5 Bl s
29 [3]1 29
35 [4]1 35
80 [5] 87
115 . [el 115
44.5 [71 44.5
100 [8] 100
65 [91 65
Create a list with ten elements Access a list element

Figure 1 A List of Size 10

6.1.2 Accessing List Elements

A list is a sequence of elements, each of which has an integer position or index. To
access a list element, you specify which index you want to use. That is done with
the subscript operator ([1) in the same way that you access individual characters in a
string. For example,

print(values[5]) # Prints the element at index 5

This is not an accident. Both lists and strings are sequences, and the [] operator can be
used to access an element in any sequence. i

There are two differences between lists and strings. Lists can hold values of any
type, whereas strings are sequences of characters. Moreover, strings are immutable —
you cannot change the characters in the sequence. But lists are mutable. You can
replace one list element with another, like this:

values[5] = 87 9
Now the element at index 5 is filled with 87 (see Figure 1).

Lists
- s om—
Syntax To create a list: [valuey, values, . . . 1]
To access an element; listReference[index]
¢ Creates an ewpty list
e 0o - : Greates a list
moreValues = ' ;
Nawe of list variable with initial valves -
values = [32, 54, 67, 29, 35, 80, 115]
'
Initial valuves
Use braekets to access an element.
values[i] = 0 |
element = values[il]
:

T e 5 x . e e i

280 Chapter 6 Lists

A list index must be
at least zero and less
than the number of
elements in the list.

An out of range error,
which occurs if you
supply an invalid

list index, can cause
your program to
terminate.

Like a mailbox that is identified by a box
number, a list element is identified by an index.

If you look carefully at Figure 1, you will find that the sixth element was modified
when we changed values[5]. As with strings, list indexes start at 0. That is, the legal
elements for the values list are

values[0], the first element

values[1], the second element

values[2], the third element

values[3], the fourth element
values[4], the fifth element

values[9], the tenth element

In this list, an index can be any integer ranging from 0 to 9.

You have to be careful that the index stays within the valid range. Trying to access
an element that does not exist in the list is a serious error. For example, if values has
ten elements, you are not allowed to access values[20]. Attempting to access an ele-
ment whose index is not within the valid index range is called an out-of-range error
or a bounds error. When an out-of-range error occurs at run time, it causes a run-time
exception.)

Here is a very common bounds error:

'va1ues[10] = number

There is no values[10] in a list with ten elements — the index can range from 0 to 9. To
avoid out-of-range errors, you will want to know how many elements are in a list.
You can use the Ten function to obtain the length of the list; that is, the number of
elements:

numElements = len(values)

The following code ensures that you only access the list when the index variable 1 is
within the legal bounds:

if 0 <= 1 and i < len(values) :
values[i] = number

Note that there are two distinct uses of the square brackets. When the square brackets
immediately follow a variable name, they are treated as the subscript operator, as in

values[4]

When the square brackets do not a follow a variable name, they create a list. For
example,

values = [4]

sets values to the list [4]; that is, the list containing the single element 4.

6.1.3 Traversing Lists

There are two fundamental ways of visiting all elements of a list. You can loop over the
index values and look up each element, or you can loop over the elements themselves.

We first look at aloop that traverses all index values. Given the values list that con-
tains 10 elements, we will want to set a variable, say 1, to 0, 1, 2, and so on, up to 9.

You can iterate over
the index values or
the elements of a list.

A list reference
specifies the location
of a list. Copying the
reference yields a
second reference to
the same list.

6.1 Basic Properties of Lists 281

Then the expression values[i] yields each element in turn. This loop displays all index
values and their corresponding elements in the values list.
for i in range(10) :
print(i, values[i])
The variable i iterates through the integer values 0 through 9, which is appropriate
because there is no element corresponding to values[10].
Instead of using the literal value 10 for the number of elements in the list, it is a
good idea to use the Ten function to create a more reusable loop:
for i in range(len{values)) :
print(i, values[i])
If you don’t need the index values, you can iterate over the individual elements using
a for loop in the form:
for element in values :
print(element)
Note again the similarity between strings and lists. As was the case with looping over
the characters in a string, the loop body is executed once for each element in the list
values. At the beginning of each loop iteration, the next element is assigned to the
loop variable element and the loop body is then executed.

6.1.4 List References

If you look closely at Figure 1, you will note that the variable values does not store
any numbers. Instead, the list is stored elsewhere and the values variable holds a refer-
ence to the list. (The reference denotes the location of the list in memory.) When you
access the elements in a list, you need not be concerned about the fact that Python
uses list references. This only becomes important when copying list references.

When you copy a list variable into another, both variables refer to the same list (see
Figure 2). The second variable is an alsas for the first because both variables reference
the same list.

scores = [10, 9, 7, 4, 5]

values = scores # Copying list reference @)

You can modify the list through either of the variables:

scores[3] = 10
print(values[3]) # Prints 10 @

Section 6.2.8 shows how you can make a copy of the contents of the list.

scores = o scores
g - ~=Hi 10

10
values = (1] 9. values = 1 2
[2] 7 . 7
31 4 31 10
[4] 5 41 5
Assignment values = scores Assighment scores[3] = 10

Figure2 Two List Variables Referencing the Same List

282 Chapter6 Lists

SELF

1. Define a list of integers containing the first five prime numbers.
2. Assume that the list primes has been initialized as described in Self Check 1. What
does it contain after executing the following loop?

for i in range(2) :
primes[4 - i] = primes[i]

3. Assume that the list primes has been initialized as described in Self Check 1. What
does it contain after executing the following loop?

for i in range(5) :
primes[i] = primes{i] + 1

4. Given the definition
values = [0, 0, 0, 0, 0, O, 0O, 0, 0, 0]
write statements to put the integer 10 into the elements of the list values with the
lowest and the highest valid index.

5. Define a list containing two strings, "Yes", and "No".

6. Canyou produce the output on page 278 without storing the inputs in a list, by
using an algorithm similar to the algorithm for finding the maximum in Section
4547

Practice It Now you can try these exercises at the end of the chapter: R6.1,R6.2, R6.7, P6.1.

S mon E"ror 2

Special Topic 6.1 |

Out-of-Range Errors

Perhaps the most common error in using lists is accessing a nonexistent element.

values = [2.3, 4.5, 7.2, 1.0, 12.2, 9.0, 15.2, 0.5]
values[8] = 5.4
Error—values has 8 elements, and the index can range from 0 to 7

If your program accesses a list through an out-of-range index, the program will generate an
exception at run time.

Reverse Subscripts

Python, unlike many other languages, also allows you to use negative subscripts when access-
ing an element of a list. The negative subscripts provide access to the list elements in reverse
order. For example, a subscript of -1 provides

access to the last element in the list: TS = — [
Tast = values[-1] [1] 54 [-9]
print("The last element in the Tist is", k3 67 -8
Tast) .
[4] 35 [-6]
Similarly, values[-2] is the second-to-last element. 151 60 |[-5]
Note that values[-10] is the first element (see the 61 115 [r-41
figure at right). 7 44 B3]
In general, the valid range of negative (8} 100 |[=21

subscripts is between -1 and -Ten(values). .

Butalist

6.1

Use Lists for Sequences of Related Items

Basic Properties of Lists 283

Lists are intended for storing sequences of values with the same meaning. For example, alist of
test scores makes perfect sense:

scores = [98, 85, 100, 89, 73, 92, 83, 65, 79, 80]

personalData = ["John Q. Public", 25, 485.25, "10 wide"]

that holds a person’s name, age, bank balance, and shoe size in positions 0, 1, 2, and 3 is bad
design. It would be tedious for the programmer to remember which of these data values is
stored in which list location. In this situation, it is far better to use three separate variables.

Computing & Society 6.1._Computer Viruses..

In November 1988, Robert

Morris, a student at Cornell

University, launched a so-
called virus program that infected
about 6,000 computers connected to
the Internet across the United States.
Tens of thousands of computer users
were unable to read their e-mail or oth-
erwise use their computers. All major
universities and many high-tech com-
panies were affected. (The Internet was
much smaller then than it is now.)

The particular kind of virus used in
this attack is called a worm. The worm
program crawled from one computer
on the Internet to the next. The worm
would attempt to connect to finger, a
program in the UNIX operating system
for finding information on a user who
has an account on a particular com-
puter on the network. Like many pro-
grams in UNIX, finger was written in
the C language. In order to store the
user name, the finger program allo-
cated an array of 512 characters (an
array is a sequence structure similar
to a list), under the assumption that
nobody would ever provide such a
long input. Unfortunately, C does not
check that an array index is less than
the length of the array. If you write
into an array using an index that is too
large, you simply overwrite memory
locations that belong to some other
objects. In some versions of the finger
program, the programmer had been
lazy and had not checked whether the

array holding the input characters was
large enough to hold the input. So the
worm program purposefully filled the
512-character array with 536 bytes.
The excess 24 bytes would overwrite
a return address, which the attacker
knew was stored just after the array.
When that method was finished, it
didn’t return to its caller but to code
supplied by the worm (see the figure, A
“Buffer Overrun” Attack). That code ran
under the same super-user privileges
as finger, allowing the worm to gain
entry into the remote system. Had the
programmer who wrote finger been
more conscientious, this particular
attack would not be possible.

In Python, as in C, all programmers
must be very careful not to overrun the
boundaries of a sequence. However,
in Python, this error causes a run-time
exception and never corrupts memory
outside the list.

One may well speculate what would
possess the virus author to spend
many weeks to plan the antisocial act
of breaking into thousands of comput-
ers and disabling them. It appears that
the break-in was fully intended by the
author, but the disabling of the com-
puters was a bug, caused by continu-
ous reinfection. Morris was sentenced
to 3 years probation, 400 hours of com-
munity service, and a $10,000 fine.

In recent years, computer attacks
have intensified and the motives
have become more sinister. Instead

of disabling computers, viruses often
steal financial data or use the attacked
computers for sending spam e-mail.
Sadly, many of these attacks continue
to be possible because of poorly writ-
ten programs that are susceptible to
buffer overrun errors.

o Before the attack

Buffer for input
(512 bytes)

Return address

0 After the attack

Overrun buffer Lﬁkw;\

(536 bytes) ?@?ﬁ 'A

o

Return address [IS==—

A “Buffer Overrun” Attack

