et,

5€

p-
nd

he

ve

o1
fe
ny

4.2 Problem Solving: Hand-Tracing 163

4.2 Problem Solving: Hand-Tracing

Hand-tracing is a
simulation of code
execution in which
you step through
instructions and
track the values of
the variables.

In Programming Tip 3.2, you learned about the method of hand-tracing. When you
hand-trace code or pseudocode, you write the names of the variables on a sheet of
paper, mentally execute each step of the code, and update the variables.

It is best to have the code written or printed on a sheet of paper. Use a marker,
such as a paper clip, to mark the current line. Whenever a variable changes, cross out
the old value and write the new value below. When a program produces output, also
write down the output in another column.

Consider this example. What value is displayed?

n = 1729

total = 0

while n > 0 :

digit = n % 10
total = total + digit
n=n// 10

print(total)

There are three variables: n, total, and digit.

n total digit

The first two variables are initialized with 1729 and 0 before the loop is entered.

n = 1729
> total =0 h total digit
while n > 0 : 1729 0
digit = n % 10
total = total + digit
n=n// 10

print(total)

Because nis greater than zero, enter the loop. The variable digit is set to 9 (the remain-
der of dividing 1729 by 10). The variable totalis setto 0+ 9 =9.

n=1729
total = 0
while n > 0 :
digit =n % 10
T ey total = total + digit
n=n//10

print(total)

Finally, n becomes 172. (Recall that the remainder in the division 1729 // 10 is dis-
carded because the // operator performs floor division.)

164 Chapter4 Loops

Cross out the old values and write the new ones under the old ones.

n= 1729
total = 0
while n > 0 :
digit =n % 10
total = total + digit
i e n=n// 10

print(total)

Now check the loop condition again.

n= 1729
total = 0
=D whilen> 0 :
digit = n ¥ 10
total = total + digit
n=n//10

print(total)

Because n is still greater than zero, repeat
the loop. Now digit becomes 2, total is
setto 9+2=11,and nissetto 17.

Repeat the loop once again, setting digit
to7,totalto11+7=18,andnto 1.

Enter the loop for one last time.
Now digit is set to 1, total to 19, and
n becomes zero.

Hand-tracing can
help you understand
how an unfamiliar
algorithm works.

Hand-tracing can
show errors in code
or pseudocode.

4.2 Problem Solving: Hand-Tracing 165

= 1729
total = 0
0 whilen > 0 .
digit = n % 10
total = total + digit
n=n// 10

Because n equals zero,
this condition is not frue.

print(total)

The condition n > 0 is now false. Continue with the statement after the loop.

= 1729
total =
while n > 0 :
digit =n % 10
total = total + digit
n=n// 10

CC”D print(total)

This statement is an output statement. The value that is output is the value of total,
which is 19,

Of course, you can get the same answer by just running the code. However, hand-
tracing can give you insight that you would not get if you simply ran the code. Con-
sider again what happens in each iteration:

* We extract the last digit of n.
* We add that digit to total.
¢ We strip the digit off of n.

In other words, the loop computes the sum of the digits in n. You now know what
the loop does for any value of n, not just the one in the example. (Why would anyone
want to compute the sum of the digits? Operations of this kind are useful for check-
ing the validity of credit card numbers and other forms of ID numbers—see Exercise
P4.33.)

Hand-tracing does not just help you understand code that works correctly. It is
a powerful technique for ﬁndmg errors in your code. When a program behaves in a
way that you don’t expect, get out a sheet of paper and track the values of the vari-
ables as you mentally step through the code.

You don’t need a working program to do hand-tracing. You can hand-trace
pseudocode. In fact, it is an excellent idea to hand-trace your pseudocode before you
go to the trouble of translating it into actual code, to confirm that it works correctly.

6. Hand-trace the following code, showing the value of n and the output.
n=>5
while n >= 0 :
n=n-1
print(n)
7. Hand-trace the following code, showing the value of n and the output.
n=1
while n <= 3 :
print(n)
n=n+1

166 Chapter4 Loops

8. Hand-trace the following code, assuming that ais 2 and nis 4. Then explain what
the code does for arbitrary values of aand n.

r=1

gzt

while i <= n :
r=r *a
i=1+1

9. Hand-trace the following code. What error do you observe?
n=1
while n != 50 :
print(n)
n=n+ 10
10. The following pseudocode is intended to count the number of digits in the
number u:

count = 1

tewp = n

while tewp > 10
Inerement covnt.
Pivide tewp by 10.0.

Hand-trace the pseudocode for n = 123 and n= 100. What error do you find?

Practice It Now you can try these exercises at the end of the chapter: R4.3, R4.6.

4.3 Application: Processing Sentinel Values

In this section, you will learn how to write loops
that read and process a sequence of input values.
Whenever you read a sequence of inputs, you
need to have some method of indicating the end
of the sequence. Sometimes you are lucky and no
input value can be zero. Then you can prompt the
user to keep entering numbers, or 0 to finish the
sequence. If zero is allowed but negative numbers
are not, you can use —1 to indicate termination.
} Such a value, which is not an actual input,
but serves as a signal for termination, is called a

sentinel.
> . - .
R Let’s put this technique to work in a program
denotes the end of a that computes the average of a set of salary values.
data set, but it is not In our sample program, we will use any negative

part of the data.

value as the sentinel. An employee would surely
not work for a negative salary, but there may be
volunteers who work for free. In the military, a sentinel guards

Inside the loop, we read an input. If the inputis ¢ Bendenoppdssageaii compiner.

= 5 1 e ¢ science, a sentinel value denotes
non-negative, we process it. In order to COMPULE 1, ond of an input sequence or the

the average, we need the total sum of all salaries, porder between input sequences.
and the number of inputs.

