In a loop, a part of a program is repeated over and over
until a specific goal is reached. Loops are important for
calculations that require repeated steps and for processing
input consisting of many data items. In this chapter, yoy
will learn about loop statements in Python, as well a5
technigues for writing programs that process input and
simulate activities in the real world.

The while Loop

In this section, you will learn about loop statements that
repeatedly execute instructions until a goal has been
reached.
Recall the investment problem from Chapter 1. You
put $10,000 into a bank account that earns 5 percent inter-
est per year. How many years does it take for the account gocqyse the interest
balance to be double the original investment? earned also earns interest,
In Chapter 1 we developed the following algorithm for @ bank balance grows
this problem: exponentially.

Start with a year value of 0, a colum for the interest, and a lgalanoe of ¢10,000.

interest balance
410,000

Repeat the following steps while the balance is less than 420,000,
Add 1 to the year valve.
Compute the inferest as balance x 0.05 (i.e., 5 percent interest).
Add the inferest to the balance.

Report the final vear valve as the answer.

You now know how to create and update the variables in Python. What you don’t yet
know is how to carry out “Repeat steps while the balance is less than $20,000”.

In a particle accelerator, subatomic particles
traverse a loop-shaped tunnel multiple times,
gaining the speed required for physical experiments.
Similarly, in computer science, statements in a

loop are executed while a condition is true.

156

4.1 The while Loop 157

Figure 1 Flowchart of awhile Loop

Awhile loop
executes instructions
repeatedly while a
condition is true.

Syntax

balance < False
TARGET?
True
In Python, the while statement implements such a Tncrement
repetition (see Syntax 4.1). It has the form year
while condition :
statements
As long as the condition remains true, the statements Calculate
inside the while statement are executed. These state- interest

ments are called the body of the while statement.

In our case, we want to increment the year coun-
ter and add interest while the balance is less than the
target balance of $20,000:

while balance < TARGET :
year = year + 1
interest = balance * RATE / 100
balance = balance + interest

Add interest
to balance

A while statement is an example of a loop. If you
draw a flowchart, the flow of execution loops again
to the point where the condition is tested (see
Tigure 1).

whﬂe Statement

i R A A A RS

while conditzon :
statements

This variable is initialized outside the loop

and updated in the loop. Feware o “off-by:om

ervors in the loop condition.

_’ See page 161.

halance = 10000.0

If the condition
never becowes false,
an infinite loop oceurs,

-w See page 161.

Put a colon here!
See page 95.

while balance < TARGET :
interest = balance * RATE / 100 :|\
balance = balance + interest These statements

are executed while

Stafements in
the body of a compound statement
must be indented to the same column position.
See page 95.

the condition is true.

158 Chapter4 Loops

Figure 2
Execution of the
doubleinv.py Loop

It often happens that you want to execute a sequence of statements a given number
of times. You can use awhile loop that is controlled by a counter, as in the following:

counter = 1 # Initialize the counter.

while counter <= 10 : # Check the counter.
print(counter)
counter = counter + 1 # Update the loop variable.

Some people call this loop count-controlled. In contrast, the while loop in the
doubleinv.py program can be called an event-controlled loop because it executes until

k th iti : WEEa
o Check the loop condition S
while balance < TARGET :

balance = 10000.0 year = year + 1
interest = balance * RATE / 100
year = 0 balance = balance + interest

9 Execute the statements in the loop
while balance < TARGET :

balance = 10500.0 year = year + 1
interest = balance * RATE / 100
year = 1 balance = balance + interest
interest = 500.0

o Check the loop condition again BT G e
while balance < TARGET : t :

balance = 10500.0 year = year + 1
interest = balance * RATE / 100
year = 1 balance = balance + interest
interest = 500.0

0 After 15 iterations T

while balance < TARGET : - no longer_true
balance = 20789.28 year = year + 1
interest = balance * RATE / 100
year = 15 balance = balance + interest
interest = 989.97

@ FExccute the statement following the loop

while balance < TARGET :

year = year + 1
B interest = balance * RATE / 100
year = 15 balance = balance + interest

balance = 20789.28

interest = 989.97 print(year)

4.1 The while Loop 159

an event occurs; namely that the balance reaches the target. Another commonly used
term for a count-controlled loop is definite. You know from the outset that the loop
body will be executed a definite number of times; in our example ten times. In con-
trast, you do not know how many iterations it takes to accumulate a target balance.
Such aloop is called indefinite.

Here is the program that solves the investment problem. Figure 2 illustrates the
program’s execution.

ch04/doubleinv.py
1 ##
2 4 This program computes the time required to double an investment.
3 :
4
5 # Create constant variables.
6 RATE = 5.0
7 INITIAL_BALANCE = 10000.0
8 TARGET = 2 * INITIAL_BALANCE
9

10 # Initialize variables used with the loop.
11 balance = INITIAL_BALANCE
12 year =0

14 # Count the years required for the investment to double.
15 while balance < TARGET :

16 year = year + I

17 interest = balance * RATE / 100

18 balance = balance + interest

19

20 # Print the results.

21 print("The investment doubled after”, year, "years.")

Program Run

The investment doubled after 15 years.

CK 1. How many years does it take for the investment to triple? Modify the program

and runit.
2. If the interest rate is 10 percent per year, how many years does 1t take for the
investment to double? Modify the program and run it.

3. Modify the program so that the balance after each year is printed. How did you
do that?

4. Suppose we change the program so that the condition of the while loop is
while balance <= TARCET :

What is the effect on the program? Why?

5. What does the following loop print?

n=1

while n < 100 :
n=2%n
print(n)

Practice It Now you can try these exercises at the end of the chapter: R4.1, R4.5, P4.13.

160 Chapter4 Loops

Table 1 while Loop Examples

Loop Output Explanation

i=0 11 When total is 10, the loop condition is
total = 0 23 false, and the loop ends.
while total < 10 : 36

i al 4 10

total = total + i

print(i, total)
i=0 1-1 Because total never reaches 10, this is
total = 0 2 -3 an “infinite loop” (see Common Error
while total < 10 : 3 -6 4.2 on page 161).

i=1d+1 4 -10

total = total - 1

print(i, total)
i=0 (No output) The statement total < 0is false when
total = 0 the condition is first checked, and the
while total < 0 : loop is never executed.

Te=tiies i

total = total - i

print(i, total)
i=0 (No output) The programmer probably thought,
total = 0 “Stop when the sum is at least 10.”
while total >= 10 : However, the loop condition controls

i=14+1 when the loop is executed, not when it

total = total + 1 ends (see Common Error 4.2 on page

print(i, total) 161).
i=0 (No output, program Because total will always be greater
total = 0 does not terminate) than or equal to 0, the loop runs

while total >= 0 :

forever. It produces no output because
=TT

the print function is outside the
total = total + i body of the loop, as indicated by the
print(i, total) indentation.

Don’t Think “Are We There Yet?”

When doing something repetitive, most of us want to know when
we are done. For example, you may think, “I want to get at least
$20,000,” and set the loop condition to

balance »= TARGET

But the while loop thinks the opposite: How long am I allowed to
keep going? The correct loop condition is

while balance < TARGET :

In other words: “Keep atit while the balance is less than the target.”

When writing a loop condition, don't ask, "Are we there yet?”
The condition determines how long the loop will keep going.

4.1 Thewhile Loop 161

Infinite Loops

Avery annoying loop error is an infinite loop: a loop that runs forever and can be stopped only
by killing the program or restarting the computer. If there are output statements in the loop,
then many lines of output flash by on the screen. Otherwise, the program just sits there and
hangs, seeming to do nothing. On some systems, you can kill a hanging program by hitting
Curl+ C. On others, you can close the window in which the program runs.
A common reason for infinite loops is forgetting to update the variable that controls the
loop:
year = 1
while year <= 20 :
interest = balance * RATE / 100
balance = balance + interest

Here the programmer forgot to add a year = year + 1 command in the loop. As a result, the year
always stays at 1, and the loop never comes to an end.

Another common reason for an infinite loop is accidentally mcrementing a counter that
should be decremented (or vice versa). Consider this example:

year = 20

while year > 0 :
interest = balance * RATE / 100
balance = balance + interest
year = year + 1

The year variable really should have been decremented, not
incremented. This is a common error because incrementing
counters is so much more common than decrementing that
your fingers may type the + on autopilot. As a consequence,
year is always larger than 0, and the loop never ends.

Like this hamster who can't stop running
in the treadmill, an infinite loop never ends. =

Off-by-One Errors

Consider our computation of the number of years that are required to double an investment:
year = 0
while balance < TARGET :
year = year + 1
interest = balance * RATE / 100
balance = balance + interest
print("The investment doubled after", year, "years.")

Should year start at 0 or at 1? Should you test for balance < TARGET or for balance <= TARGET? It is
easy to be off by one in these expressions.

Some people try to solve off-by-one errors by randomly inserting +1 or -1 until the pro-
gram seems to work, which is a terrible strategy. It can take a long time to test all the various
possibilities. Expending a small amount of mental effort is a real time saver.

162 Chapter4 Loops

Fortunately, off-by-one errors are easy to avoid, simply by
thinking through a couple of test cases and using the information
from the test cases to come up with a rationale for your decisions.

Should year start at O or at 1? Look at a scenario with simple val-
ues: an initial balance of $100 and an interest rate of 50 percent. After
year 1, the balance is $150, and after year 2 it is $225, or over $200. So
the investment doubled after 2 years. The loop executed two times,
incrementing year each time. Hence year must start at 0, notat 1.

An off-by-one error
is a common error
when programming
loops. Think through
simple test cases

to avoid this type

of error.

In other words, the balance variable denotes the balance after the end of the year. At the outset,
the balance variable contains the balance after year 0 and not after year 1.

Next, should you use a < or <= comparison in the test? This is harder to figure out, because
itis rare for the balance to be exactly twice the initial balance. There is one case when this hap-
pens, namely when the interest rate is 100 percent. The loop executes once. Now year is 1, and
balance is exactly equal to 2 * INITIAL_BALANCE. Has the investment doubled after one year? It
has. Therefore, the loop should not execute again. If the test condition is balance < TARGET, the
loop stops, as it should. If the test condition had been balance <= TARGET, the loop would have
executed once more. “

In other words, you keep adding interest while the balance has not yet doubled.

Computing & Society 4.1 The First Bug

According to legend, the The pioneering computer scientist grams right. | can remember the exact

first bug was found in the
Mark Il, a huge electrome-
chanical computer at Harvard Univer-
sity. It really was caused by a bug—a
moth was trapped in a relay switch.
Actually, from the note that the
operator left in the log bool next to
the moth (see the photo), it appears as
if the term "bug” had already been in
active use at the time.

The First Bug

Maurice Wilkes wrote, “Somehow, at
the Moore School and afterwards, one
had always assumed there would be
no particular difficulty in getting pro-

<y ey
1/7d* v‘,"f,]’?’_a__t“‘f"—- :j L«‘__‘,"n -
& [’ , 1
\Say
F \r,Y A< *ru a
[‘ég’)‘ \Jﬂﬁrwr A gaads 1
{Jua ol .,-c'i \h'f"\ 3

instant in time at which it dawned on
me that a great part of my future life
would be spent finding mistakes in my
own programs.”

i i

‘[:'; Rc:r (’Sl’h i‘.‘ c_*\g Ck)

|2 ¢

Leloy*70 Cane|
\\Mhli\)ln f%\au\'

J‘f bq«i Le;h.‘ {‘Q\J.Y’\J\r

