118 Chapter 3 Decisions

First, estimate realistically how much time it
will take you to:

¢ Design the program logic.
¢ Develop test cases.

¢ Typethe program in and fix syntax errors. e
o Test and debug the program. "’ﬂ

For example, for the income tax program I might
estimate an hour for the design; 30 minutes for
developing test cases; an hour for data entry and i / i
fixing syntax errors; and an hour for testing and u—
debugging. That is a total of 3.5 hours. f I work Make a schedule for your programming
two hours a day on this project, it will take me work and build in time for problems.
almost two days.

Then think of things that can go wrong. Your computer might break down. You might be
stumped by a problem with the computer system. (That is a partmularly important concern
for beginners. It is very common to lose a day over a trivial problem just because it takes time
to track down a person who knows the magic command to overcome it.) As a rule of thumb,
double the time of your estimate. That is, you should start four days, not two days, before the
due date. If nothing went wrong, great; you have the program done two days early. When the
inevitable problem occurs, you have a cushion of time that protects you from embarrassment
and failure.

3.7 Boolean Variables and Operators

The Boolean type
bool has two values,
False and True.

A Boolean variable
is also called a flag
because it can be
either up (true) or
down (false).

Sometimes, you need to evaluate a logical condition in one part of a program and use
it elsewhere. To store a condition that can be true or false, you use a Boolean variable.
Boolean variables are named after the mathematician George Boole (1815-1864), a
pioneer in the study of logic.

In Python, the bool data type has exactly two values, denoted False and True. These
values are not strings or integers; they are special values, just for Boolean variables.
Here is the initialization of a variable set to True:

failed = True
You can use the value later in your program to make a decision:

if failed : # Only executed if failed has been set to true

When you make complex decisions, you often need to combine Boolean values. An
operator that combines Boolean conditions is called a Boolean operator. In Python,
the and operator yields True only when both conditions are true. The or operator yields
True if at least one of the conditions is true.

Suppose you write a program that processes temperature values, and you want
to test whether a given temperature corresponds to liquid water. (At sea level, water
freezes at 0 degrees Celsius and boils at 100 degrees.) Water is liquid if the tempera-
ture is greater than zero and less than 100:

if temp > 0 and temp < 100 :
print{"Liquid™)

3.7 Boolean Variables and Operators 119

A B A and B A B AorB A hot A
True True True True True True True False
True False False True False True False True
False True False False True True
False False False False False False

Figure 8 Boolean Truth Tables

The condition of the test has two parts, joined by the and operator, Fach part is a

Boolean value that can be true or false. The combined expression is true if both indi-

vidual expressions are true. If either one of the expressions is false, then the result is
R also false (see Figure 8). _
Boolean operators The Boolean operators and and or have a lower precedence than the relational
that combine operators. For that reason, you can write relational expressions on either side of the

;ﬁg‘i’:’ons; and Boolean operators without using parentheses, For example, in the expression

temp > 0 and temp < 100

the expressions temp > 0 and temp < 100 arc evaluated first. Then the and operator
combines the results. (Appendix B shows a table of the Python operators and their
precedences.)

Conversely, let’s test whether water is not liquid at a given temperature. That is
the case when the temperature is at most 0 or at least 100. Use the or operator to
combine the expressions:

if temp <= 0 or temp »>= 100 :
print("Not Tiquid")

Figure 9 shows flowcharts for these examples.

and or
False False False
Temperature Temperature Temperature
>0? =0? =100?
Both conditions True True True
must be true I
At least
False i
Temperature one condition
<100? must be true
True
Water is Water is
liquid not liquid

Figure 9 Flowcharts for and and or Combinations

120 Chapter 3 Decisions

To invert a condition,
use the not operator.

At this geyser in Iceland,
you can see ice, liquid
water, and steam.

Sometimes you need to invert a condition with the not Boolean operator. The not
operator takes a single condition and evaluates to True if that condition is false and to
False if the condition is true. In this example, output occurs if the value of the Boolean
variable frozen is False:

if not frozen :
print("Not frozen")

Table 5 illustrates additional examples of evaluating Boolean operators. The follow-
ing program demonstrates the use of Boolean expressions.

ch03/compare2.py
1 ##
£& o Thhis program demonstrates comparisons of numbers, using Boolean expressions.
3
4
5 x = float(input("Enter a number (such as 3.5 or 4:5): 7))
6 y = float(input("Enter a second number: .
7
8 ifx==y:
9 print("They are the same.")
10 else :
11 if x>y
12 print("The first number is larger™
13 else :
14 print("The first number is smaller"™)
15
16 if -0.01 < x -y and x - y < 0.01
17 print("The numbers are close together™)
18
19 ifX=y+lorx==y-1;:
20 print("The numbers are one apart')
21
22 ifx>0andy>0o0orx<0andy<0:
23 print("The numbers have the same sign")
24 else :

25 print("The numbers have different signs")

3.7 Boolean Variables and Operators 121

Program Run

Enter a number (such as 3.5 or 4.5): 3,95
Enter a second number: -1.02

The first number 1is larger

The numbers have different signs

~ Table 5 Boolean Operator Examples

Expression Value Comment

0 < 200 and 200 < 100 False Only the first condition is true.
0 < 200 or 200 < 100 True The first condition is true,
0 < 200 or 100 < 200 True The or is not a test for “either-or®. If both

conditions are true, the result is true.

O <xandx<100orx==-1 (0<xandx <100 Theand operator has a higher precedence than the

or x = -1 or operator (see Appendix B).
not (0 < 200) False 0 < 200 s true, therefore its negation is false.
frozen == True frazen There is no need to compare a Boolean variable
with True.
frozen == False not frozen It is clearer to use not than to compare with False.

Practice It

31. Suppose xand y are two integers. How do you test whether both of them are
zero?

32. How do you test whether at least one of them is zero?

33. How do you test whether exactly one of them is zero?

34. Whatis the value of not not frozen?

35. Whatis the advantage of using the type bool rather than strings "false"/"true” or
integers 0/1?

Now you can try these exercises at the end of the chapter: R3.29, P3.29.

Confusing and and or Conditions

Itis a surprisingly common error to confuse and and or conditions. A value lies between 0 and
100 if it is at least 0 and at most 100. It lies outside that range if it is less than 0 or greater than
100. There is no golden rule; you just have to think carefully.

Often the and or or is clearly stated, and then it isn’t too hard to implement it. But some-
times the wording isn’t as explicit. It is quite common that the individual conditions are nicely
setapart in a bulleted list, but with little indication of how they should be combined. Consider
these instructions for filing a tax return. You can claim single filing status if any one of the fol-
lowing is true:

* You were never married.
* You were legally separated or divorced on the last day of the tax year.
* You were widowed, and did not remarry.

122 Chapter 3 Decisions

Since the test passes if any one of the conditions is true, you must combine the conditions with
or. Elsewhere, the same instructions state that you may use the more advantageous status of
“married filing jointly” if all five of the following conditions are true:

¢ Your spouse died less than two years ago and you did not remarry.

* You have a child whom you can claim as dependent.

o That child lived in your home for all of the tax year.

* You paid over half the cost of keeping up your home for this child.

* You filed ajoint return with your spouse the year he or she died.

Because all of the conditions must be true for the test to pass, you must combine them with an
and operator.

Readability

Programs are more than just instructions to be executed by a computer. A program imple-
ments an algorithm and is commonly read by other people. Thus, it is important for your
programs not only to be correct but also to be easily read by others. While many programmers
focus only on a readable layout for their code, the choice of syntax can also have an impact on
the readability.

To help provide readable code, you should never compare against a literal Boolean value
(True or False) in a logical expression. For example, consider the expression in this if state-
ment:

if frozen == False :
print("Not frozen")
A reader of this code may be confused as to the condition that will cause the if statement to be
executed. Instead, you should use the more acceptable form

if not frozen :
print("Not frozen")

which is easier to read and explicitly states the condition.

Tt is also important to have appropriate names for variables that contain Boolean values.
Choose names such as done or valid, so that it is clear what action should be taken when the
variable is set to True or False.

Chaining Relational Operators

In mathematics, it is very common to combine multiple relational operators to compare a vari-
able against multiple values. For example, consider the expression

0 <= value <= 100

Python also allows you to chain relational operators in this fashion. When the expression is
evaluated, the Python interpreter automatically inserts the Boolean operator and to form two
separate relational expressions

value >= 0 and value <= 100

Relational operators can be chained arbitrarily. For example, the expression a < x > b is per-
fectly legal. [t means the same as a < xand x > b. In other words, x must exceed both a and b.
Most programming languages do not allow multiple relational operators to be combined in
this fashion; they require explicit Boolean operators. Thus, when first learning to program, it
is good practice to explicitly insert the Boolean operators. That way, if you must later change

3.7 Boolean Variables and Operators 123

to a different programming language, you will avoid syntax errors generated by chaining rela-
tional operators in a logical expression.

Short-Circuit Evaluation of Boolean Operators

Tl}e and and or operators are computed using short-circuit evalu- [oo iy o
ation. In other words, logical expressions are evaluat(?d from lf?ft t0 operators are
right, and evaluation stops as soon as the truth value is determined. computed using
When an and is evaluated and the first condition is false, the second sho;‘t—af’cwt
condition is not evaluated, because it does not matter what the out- ~ &v@uation: AEadon
3 as the truth value
come of the second test is. iz detarmined.no

For example, consider the expression further conditions

quantity > 0 and price / quantity < 10 are evaluated.

Suppose the value of quantity is zero. Then the test quantity > 0 fails, and the second test is not
attempted. That is just as well, because it is illegal to divide by zero.

Similarly, when the first condition of an or expres-
sion is true, then the remainder is not evaluated because
the result must be true.

In a short circuit, electricity travels along the path of
least resistance. Similarly, short-circuit evaluation
takes the fastest path for computing the result

of a Boolean expression.

De Morgan’s Law

Humans generally have a hard time comprehending logical conditions with 720t operators
applied to and/or expressions. De Morgan’s Law, named after the logician Augustus De Mor-
gan (1806-1871), can be used to simplify these Boolean expressions.

Suppose we want to charge a higher shipping rate if we don’t ship within the continental
United States.

if not (country == "USA" and state != "AK" and state != "HI") :
shippingCharge = 20.00

This test is a little bit complicated, and you have to think carefully through the logic. When it
is not true that the country is USA and the state is not Alaska and the state is not Hawaii, then
charge $20.00. Huh? It is not true that some people won’t be confused by this code.

The computer doesn’t care, but it takes human programmers to write and maintain the
code. Therefore, it is useful to know how to simplify such a condition.

De Morgan’s Law has two forms: one for the negation of an and expression and one for the
negation of an or expression:

not (A and B) 1s the same as not A or not B
De Morgan’s law

tells you how to
negate and and or
conditions.

not (A or B) 1s the same as not A and not B

Pay particular attention to the fact that the and and or operators
are reversed by moving the not inward. For example, the negation
of “the state is Alaska or it 1s Hawai”,

not (state = "AK" or state == "HI")
1s “the state 1s not Alaska and it is not Hawau™:

state != "AK" and state != "HI"

1

124 Chapter 3 Decisions

Now apply the law to our shipping charge computation:
not (country == "USA" and state != "AK" and state != "HI™)
is equivalent to
not {(country == "USA") or not (state != "AK") or not (state != "HI")
Because two negatives cancel each other out, the result is the simpler test
country != "USA" or state == "AK" or state == "HI"

In other words, higher shipping charges apply when the destination is outside the United
States or to Alaska or Hawai.

To simplify conditions with negations of and or or expressions, it is usually a good idea to
apply De Morgan’s Law to move the negations to the innermost level.

3.8 Analyzing Strings

Use the in operator
to test whether

a string occurs

in anather.

Sometimes it is necessary to determine if a string contains a given substring. That is,
one string contains an exact match of another string. Given this code segment,

name = "John Wayne"
the expression
"Way" in name

yields True because the substring "way" occurs within the string stored in variable name.
Python also provides the inverse of the in operator, not in:

if "-" not in name :
print("The name does not contain a hyphen.")

Sometimes we need to determine not only if a string contains a given substring, but
also if the string begins or ends with that substring. For example, suppose you are
given the name of a file and need to ensure that it has the correct extension.

if filename.endswith(".html1") :
print("This is an HTML file.™)

The endswith string method is applied to the string stored in filename and returns True
if the string ends with the substring ".htm1" and False otherwise. Table 6 describes
additional string methods available for testing substrings.

Table 6 Operations fdr Testing Substrings

Operation Description

substring in s Returns True if the string s contains substring and False otherwise.

s.count (substring) Returns the number of non-overlapping occurrences of substring in the
string s.

s.endswith(substring) Returns True if the string s ends with the substring and False otherwise.

s.find(substring) Returns the lowest index in the string s where substring begins, or -1 if

substring is not found.

s.startswith(substring) Returns True if the string s begins with substring and False otherwise.

