116 Chapter 3 Decisions

26. Draw a flowchart for a program that reads a value temp. If it is less than zero,
print “Ice”. If itis greater than 100, print “Steam”. Otherwise, print “Liquid”.

Practice It Now you can try these exercises at the end of the chapter: R3.12, R3.13, R3.14.

Making decisions is an
essential part of any com-
puter program. Nowhere is
this more ohvious than in a computer
system that helps sort luggage at an
airport. After scanning the luggage
identification codes, the system sorts
the items and routes them to differ-
ent conveyor belts. Human operators
then place the items onto trucks. When
the city of Denver built a huge airport
to replace an outdated and congested
facility, the luggage system contractor
went a step further. The new system
was designed to replace the human
operators with robotic carts. Unfortu-
nately, the system plainly did not
work. It was plagued by mechanical
problems, such as luggage falling onto
the tracks and jamming carts. Equally
frustrating were the software glitches.
Carts would uselessly accumulate at
some locations when they were needed
elsewhere.

The airport had been scheduled
to open in 1993, but without a func-
tioning luggage system, the opening
was delayed for over a year while the
contractor tried to fix the problems.
The contractor never succeeded,
and ultimately a manual system was
installed. The delay cost the city and
airlines close to a billion dollars, and
the contractor, once the leading lug-
gage systems vendor in the United
States, went bankrupt.

Clearly, it is very risky to build a
large system based on a technology
that has never been tried on a smaller
scale. As robots and the software that
controls them get better over time,
they will take on a larger share of lug-
gage handling in the future. But it is
likely that this will happen in an incre-
mental fashion.

3.6 Problem Solving: Test Cases

__Computing & Society 3.1_Denver's Luggage Handling System

The Denver airport originally had a
fully automatic system for moving lug-
gage, replacing human operators with
robotic carts. Unfortunately, the sys-
tem never worked and was dismantled
before the airport was opened.

Consider how to test the tax computation program from Section 3.3. Of course,
you cannot try out all possible inputs of marital status and income level. Even if you
could, there would be no point in trying them all. If the program correctly computes
one or two tax amounts in a given bracket, then we have good reason to believe that
all amounts will be correct.

Each branch of your
program should

be covered by a
test case.

status, yielding four test cases.

You want to aim for complete coverage of all decision points. Here is a plan for
obtaining a comprehensive set of test cases:

o There are two possibilities for the marital status and two tax brackets for each

o Test a handful of boundary conditions, such as an income that is at the boundary
between two brackets, and a zero income.

o If you are responsible for error checking (which is discussed in Section 3.9), also
test an invalid input, such as a negative income.

It is a good idea to
design test cases
before implementing
a program.

 SELF

Practice It

3.6 Problem Solving: Test Cases 117

Make a list of the test cases and the expected outputs:

Test Gase Expected Qutput Comment

30,000 s 3,000 10% bracket
72,000 ¢ 13,200 3,200+ 257 of 40,000
50,000 wm 5,000 10% bracket
104,000 w 16,400 6,400 + 257 of 40,000
32,000 s 3,200 boundary case
0s 0 boundary case

When you develop a set of test cases, it is helpful to have a flowchart of your program
(see Section 3.5). Check off each branch that has a test case. Include test cases for the
boundary cases of each decision. For example, if a decision checks whether an input is
less than 100, test with an input of 100.

It is always a good idea to design test cases before starting to code. Working
through the test cases gives you a better understanding of the algorithm that you are
about to implement.

27. Using Figure 1 on page 93 as a guide, follow the process described in Section 3.6 to
design a set of test cases for the elevatorsim.py program in Section 3.1.

28. Whatisaboundary test case for the algorithm in How To 3.1 on page 102? What is
the expected output?

29. UsingFigure4 onpage 111 asaguide, follow the process described in Section 3.6 to
design a set of test cases for the earthquake.py program in Section 3.3.

30. Suppose you are designing a part of a program for a medical
robot that has a sensor returning an x- and y-location (measured
in cm). You need to check whether the sensor location is inside
the circle, outside the circle, or on the boundary (specifically,
having a distance of less than 1 mm from the boundary).
Assume the circle has center (0, 0) and a radius of 2 cm. Give a
set of test cases.

Now you can try these exercises at the end of the chapter: R3.15, R3.16.

Make a Schedule and Make Time for Unexpected Problems

Commercial software is notorious for being delivered later than promised. For example,
Microsoft originally promised that its Windows Vista operating system would be available late
in 2003, then in 2005, then in March 2006; it finally was released in January 2007. Some of the
early promises might not have been realistic. It was in Microsoft’s interest to let prospective
customers expect the imminent availability of the product. Had customers known the actual
delivery date, they might have switched to a different product in the meantime. Undeniably,
though, Microsoft had not anticipated the full complexity of the tasks it had set itself to solve.

Microsoft can delay the delivery of its product, but it is likely that you cannot. As a student
or a programmer, you are expected to manage your time wisely and to finish your assignments
on time. You can probably do simple programming exercises the night before the due date,
but an assignment that looks twice as hard may well take four times as long, because more
things can go wrong. You should therefore make a schedule whenever you start a program-
ming project.

