112 Chapter 3 Decisions

The complete program for printing the description of an earthquake given the
Richter scale magnitude is provided below.

ch03/earthquake.py

1 ##

2 # 'This program prints a description of an earthquake, given the Richter scale magnitude.

3 #

4

5 # Obtain the user input.

6 richter = float(input("Enter a magnitude on the Richter scale: ")

7

8 # Print the description.

9 if richter »>= 8.0 :

10 print("Most structures fall")

11 elif richter >= 7.0

12 print("Many buildings destroyed™)

13 elif richter >= ¢

14 print("Many buildings considerably damaged, some collapse™)

15 elif richter »= 4.5

16 print("Damage to poorly constructed buildings™)

17 else :

18 print("No destruction of huildings")
16. Ina game program, the scores of players A and B are stored in variables scoreA

&=

17.

18.
19.

20.
21.

and scoreB. Assuming that the player with the larger score wins, write an i/e1if
sequence that prints out "A won", "B won", or "Game tied”.

Write a conditional statement with three branches that sets s to 1 if x is positive,
to -1 if x is negative, and to Q if x is zero.

How could you achieve the task of Self Check 17 with only two branches?
Beginners sometimes write statements such as the following:

if price > 100 :
discountedPrice = price - 20

elif price <= 100 :
discountedPrice = price - 10

Explain how this code can be improved.
Suppose the user enters -1 into the earthquake program. What is printed?

Suppose we want to have the earthquake program check whether the user
entered a negative number. What branch would you add to the if statement, and
where?

practice It Now you can try these exercises at the end of the chapter: R3.22, P3.9, P3.34.

3.5 Problem Solving: Flowcharts

Flow charts are made

You have seen examples of flowcharts earlier in this chapter. A flowchart shows the

up of elements for structure of decisions and tasks that are required to solve a problem. When you have
tasks, input/output, to solve a complex problem, it is a good idea to draw a flowchart to visualize the flow

and decisions.

of control. The basic flowchart elements are shown in Figure 5.

Figu
Flow

Each

decis
tasks
decis|

Figure 5
Flowchart Elements

Each branch of a
decision can contain
tasks and further
decisions.

Never point an
arrow inside
another branch.

3.5 Problem Solving: Flowcharts 113

T
Simple task Input/output @ondition 3eis

False

The basicidea is simple enough. Link tasks and input/output boxes in the sequence in
which they should be executed. Whenever you need to make a decision, draw a dia-
mond with two outcomes (see Figure 6).

Each branch can contain a sequence of tasks and even additional decisions. If there
are multiple choices for a value, lay them out as in Figure 7.

There is one issue that you need to be aware of when drawing flowcharts. Uncon-
strained branching and merging can lead to “spaghetti code”, a messy network of
possible pathways through a program.

There is a simple rule for avoiding spaghetti code: Never point an arrow inside
another branch.

To understand the rule, consider this example: Shipping costs are $5 inside the
United States, except that to Hawaii and Alaska they are $10. International shipping
costs are also $10.

: True “Choice 1”
Choice 1 A
False
: True “Choice 2”
Choice 2 i
Talse
T : True “Choice 3”7
Condition =i Choice 3 T
False Talse
Rl il True branch | “Other”
branch

Figure 6 Flowchart with Two Outcomes Figure 7 Flowchart with Multiple Choices

114 Chapter 3 Decisions

You might start out with a flowchart like the following:

True

Inside US?
False

Shipping T AT
cost = $10 Continental US? il f:?ilgg

False

Now you may be tempted to reuse the “shipping cost = $10” task:

1 True
Inside US?
False
Shipping T ippi
cost = $10 ConirentllUSiy Sg;fi‘f.;%

I False

Don’t do that! The red arrow points inside a different branch. Instead, add another
task that sets the shipping cost to $10, like this:

ar
TheideilI5 b

False

Shipping : True
cost = $10 Continental US?

False

Shipping Shipping
cost=$10 cost = $5

3.5 Problem Solving: Flowcharts 115

Not only do you avoid spaghetti code, but it is also a
better design. In the future it may well happen that the
cost for international shipments is different from that
to Alaska and Hawai.

Flowcharts can be very useful for getting an intui-
tive understanding of the flow of an algorithm. How-
ever, they get large rather quickly when you add more
details. At that point, it makes sense to switch from

Spaghetti code has so many
flowcharts to pseudocode. pathways that it becomes

The complete program computing the shipping impossible to understand.
costs is provided below.

ch03/shipping.py

##
A program to compute shipping costs.

1
2
3
4 .
. 5 # Obtain the user inpur.
6 country = input("Enter the country: ")
7 state = input("Enter the state or province: ")
8
9 # Compute the shipping cost.
10 shippingCost = 0.0

11

12 4if country == "USA" :

13 if state = "AK" or state == "HI" : # See Section 3.7 for the or operator
14 shippingCost = 10.0

15 else 1

16 shippingCost =

17 else :

18 shippingCost = 10.0

19

20 # Print the results.

21 print("Shipping cost to %s, %s: $%.2f" % (state, country, shippingCost))

Program Run

Enter the country: USA
Enter the state or province: VA
Shipping cost to VA, USA: $5.00

22. Draw aflowchart for a program that reads a .
value temp and prints “Frozen” if it is less Input<0?
than zero.
False
23, What is wrong with the flowchart on the right?
24. How do you fix the flowchart of T
Self Check 23?
25. Draw a flowchart for a program that reads a value s
x. If it is less than zero, print “Error”. Otherwise, ; A Loh
Status = “OK Status = “Error

print its square root.

116 Chapter 3 Decisions

26. Draw a flowchart for a program that reads a value temp. If it is less than zero,
print “Iee”. If itis greater than 100, print “Steam”. Otherwise, print “Liquid”.

Practice It

Now you can try these exercises at the end of the chapter: R3.12, R3.13, R3.14.

Computing & Society 3.1 _Denver’s Luggage Handling System

Making decisions is an

essential part of any com-

puter program. Nowhere is
this more obvious than in a computer
system that helps sort luggage at an
airport. After scanning the luggage
identification codes, the system sorts
the items and routes them to differ-
ent conveyor belts. Human operators
then place the items onto trucks. When
the city of Denver built a huge airport
to replace an outdated and congested
facility, the luggage system contractor
went a step further. The new system
was designed to replace the human
operators with robotic carts. Unfortu-
nately, the system plainly did not
work. It was plagued by mechanical
problems, such as luggage falling onto
the tracks and jamming carts. Equally
frustrating were the software glitches.
Carts would uselessly accumulate at
some locations when they were needed
elsewhere.

The airport had been scheduled
to open in 1993, but without a func-
tioning luggage system, the opening
was delayed for over a year while the
contractor tried to fix the problems.
The contractor never succeeded,
and ultimately a manual system was
installed. The delay cost the city and
airlines close to a billion dollars, and
the contractor, once the leading lug-
gage systems vendor in the United
States, went bankrupt.

Clearly, it is very risky to build a
large system based on a technology
that has never been tried on a smaller
scale. As robots and the software that
controls them get better over time,
they will take on a larger share of lug-
gage handling in the future. But it is
likely that this will happen in an incre-
mental fashion.

3.6 Problem Solving: Test Cases

The Denver airport originally had a
fully automatic system for moving lug-
gage, replacing human operators with
robotic carts. Unfortunately, the sys-
tem never worked and was dismantled
before the airport was opened.

Consider how to test the tax computation program from Section 3.3. Of course,
you cannot try out all possible inputs of marital status and income level. Even if you
could, there would be no point in trying them all. If the program correctly computes
one or two tax amounts in a given bracket, then we have good reason to believe that
all amounts will be correct.

Each branch of your
program should
be covered by a
test case. :

status, yielding four test cases.

between two brackets, and a zero income.

You want to aim for complete coverage of all decision points. Here is a plan for
obtaining a comprehensive set of test cases:

* There are two possibilities for the marital status and two tax brackets for each

* Test ahandful of boundary conditions, such as an income that is at the boundary

* If you are responsible for error checking (which is discussed in Section 3.9), also
test an invalid input, such as a negative income.

