CHAPTER

To implement decisions using
if statements

To compare integers, floating-point numbers, and strings

To write statements using Boolean expressions

To develop strategies for testing your programs

To validate user input

HAPTER CONTEN

3.1 THEIF STATEMENT 092
Syntax 3.1: if Statement 94
Common Error 3.1: Tabs 96
Programming Tip 3.1: Avoid
Duplication in Branches 96
Special Topic 3.1: Conditional Expressions 97

3.2 RELATIONAL OPERATORS 97

Common Error 3.2: Exact Comparison of
Floating-Point Numbers 101
Special Topic 3.2: Lexicographic Ordering
of Strings 101
How To 3.1: Implementing an if Statement 102
Worked Example 3.1: Extracting the Middle 104

3.3 NESTED BRANCHES 106
Programming Tip 3.2: Hand-Tracing 108

3.4 MULTIPLE ALTERNATIVES 109

3.5 PROBLEM SOLVING: FLOWCHARTS 112

Computing & Society 3.1: Denver's Luggage
Handling System 116

3.6 PROBLEM SOLVING: TEST CASES 116

Programming Tip 3.3: Make a Schedule and Make
Time for Unexpected Problems 117

3.7 BOOLEAN VARIABLES
AND OPERATORS 118

Common Error 3.3: Confusing and and or
Conditions 121

Programming Tip 3.4: Readability 122

Special Topic 3.3: Chaining Relational
Operators 122

Special Topic 3.4: Short-Circuit Evaluation of
Boolean Operators 123

Special Topic 3.5: De Morgan’s Law 123

3.8 ANALYZING STRINGS 124

3.9 APPLICATION: INPUT VALIDATION 127
Special Topic 3.6: Terminating a Program 130
Special Topic 3.7: Text Input in Graphical

Programs 131
Worked Example 3.2: Intersecting Circles 131
Computing & Society 3.2: Artificial Intelligence 135

One of the essential features of computer programs is
their ability to make decisions. Like a train that changes
tracks depending on how the switches are set, a program
can take different actions depending on inputs and other
circumstances.

In this chapter, you will learn how to program simple and
complex decisions. You will apply what you learn to the
task of checking user input.

3.1 The if Statement

e e The if statement is used to implement a decision

‘ allows a program to (see Syntax 3.1 on page 94). When a condition is
L carry out different fulfilled, one set of statements is executed. Other-
\ gStibls oep dino di wise, another set of statements is executed.

‘ the nature of the data : ; .
to be processed. Here is an example using the if statement: In

many countries, the number 13 is considered
unlucky. Rather than offending superstitious ten-
ants, building owners sometimes skip the thir-
teenth floor; floor 12 is immediately followed by
floor 14. Of course, floor 13 is not usually left
empty or, as some conspiracy theorists believe,
filled with secret offices and rescarch labs. It is
i simply called floor 14. The computer that controls
’ the building elevators needs to compensate for
this foible and adjust all floor numbers above 13. . udl
Let’s simulate this process in Python. We will ~ This elevator panel “skips” the
ask the user to type in the desired floor number ~ "¥teenth floor. The fioor is not

1 : actually missing—the computer
; and then compute the actual floor. When the input 44t controls the elevator adjusts

L) is above 13, then we need to decrement the input the floor numbers above 13.
to obtain the actual floor.

Anif statement is like a fork in
the road. Depending upon a
decision, different parts of the
program are executed.

92

S
S

r

Figure 1
Flowchart for if Statement

True
actualFloor =
floor - 1

For example, if the user provides an input of 20, the program determines the actual

3.1 Theif Statement 93

Condition

Talse
floor > 132

actualFloor =
floor

floor as 19. Otherwise, we simply use the supplied floor number.

actualFloor = 0

if floor > 13

actualFloor = floor - 1
else :

actualFloor = floor

The flowchart in Figure 1 shows the branching behavior.

In our example, each branch of the 1f statement contains a single statement. You
can include as many statements in each branch as you like. Sometimes, it happens that
there is nothing to do in the e1se branch of the statement. In that case, you can omitit

entirely, such as in this example:

actualFloor = floor

if floor > 13 :
actualFloor = actualFloor - 1

See Figure 2 for the flowchart.

True

actualFloor =

actualFloor - 1

Figure 2
Flowchart for if Statement
with No else Branch

No else branch
False o
floor > 132

=== —

94 Chapter 3 Decisions

| if Statement

e T I rT—

Syntax if condition : if condition :

statements statements,
| else :
! statements,

The colon indicates

i A condition that is true or false. L R S
| Often uses relational operators: “\F -
| = 1= < <= > >= _

| (See page 98.) if floor > 13 : If the condition s true, the statewent(s)
actualFloor = floor - 1 in this branch are executed in sequence;
else : if the econdition is false, they are skipped.
; actualFloor = floor
Owit the e1se branch \
L is nothi do. g
; f ’her_e Srm o If the condition is false, the statementls)
H in this branch are executed in sequence;
The if and else if the eondition is true, they are skipped.

) e Clavses must
ﬁ' be aligned.

The following program puts the if statement to work. This program asks for the
desired floor and then prints out the actual floor.

ch03/elevatorsim.py

##
This program simulates an elevator panel that skips the 13th floor.

1
2
3
4
5 # Obtain the floor number from the user as an integer.
6
7
8
9

floor = int(input("Floor: ™))
Adjust floor if necessary.
if floor > 13 :
10 actualFloor = floor - 1
11 else :
12 actualFloor = floor
13

14 # Print the result.
15 print("The elevat

I floor", actualFloor)

Program Run

Floor: 20
The elevator will travel to the actual floor 19

The Python instructions we have used so far have been simple statements that
must be contained on a single line (or explicitly continued to the next line—see

Compound
statements consist
of a headerand a
statement block.

3.1 Theif Statement 95

Special Topic 2.3). Some constructs in Python are compound statements, which
span multiple lines and consist of a header and a statement block. The if statement is
an example of a compound statement.
if totalSales > 100.0 : # The header ends in a colon.
discount = totalSales * 0.05 # Lines in the block are indented to the same level

totalSales = totalSales - discount
print("You received a discount of"”, discount)

Compound statements require a colon (:) at the end of the header. The statement
block is a group of one or more statements, all of which are indented to the same
indentation level. A statement block begins on the line following the header and ends
at the first statement indented less than the first statement in the block. You can use
any number of spaces to indent statements within a block, but all statements within
the block must have the same indentation level. Note that comments are not state-
ments and thus can be indented to any level.

Statement blocks, which can be nested inside other blocks, signal that one or more
statements are part of the given compound statement. In the case of the if construct,
the statement block specifies the instructions that will be executed if the condition 1s
true or skipped if the condition is false.

1. In some Asian countries, the number 14 is considered unlucky. Some building
owners play it safe and skip both the thirteenth and the fourteenth floor. How
would you modify the sample program to handle such a building?

2. Consider the following if statement to compute a discounted price:

if originalPrice > 100 :
discountedPrice = originalPrice - 20
else :
discountedPrice = originalPrice - 10

What is the discounted price if the original price is 95? 1002 105?

3. Compare this if statement with the one in Self Check 2:

if originalPrice < 100 :
discountedPrice = originalPrice - 10
else :
discountedPrice = originalPrice - 20
Do the two statements always compute the same value? If not, when do the
values differ?

4. Consider the following statements to compute a discounted price:

discountedPrice = originalPrice
if originalPrice > 100 :
discountedPrice = originalPrice - 10

What is the discounted price if the original price is 95? 1002 105?

5. The variables fuelAmount and fuelCapacity hold the actual amount of fuel and the
size of the fuel tank of a vehicle. If less than 10 percent is remaining in the tank, a
status light should show a red color; otherwise it shows a green color. Simulate
this process by printing out either "red” or "green".

practice It Now you can try these exercises at the end of the chapter: R3.5, R3.6, P3.32.

96 Chapter 3 Decisions

Tabs

e Block-structured code has the property that nested statements are indented by one or more
‘* levels:
if totalSales > 100.0 :

1 discount = totalSales * 0.05

| totalSales = totalSales - discount

| print("You received a discount of $%.2f" % discount)

else :

t diff = 100.0 - totalSales

| if diff < 10.0 :

|t print("If you were to purchase our item of the day you can receive a 5% discount.™)
| else :

[t print("You need to spend $%.2f more to receive a 5% discount." % diff)
I

I

| 1
e

0 1 2 Indentation level

Python requires block-structured code as part of its syntax. The alignment of statements
within a Python program specifies which statements are part of a given statement block.

How do you move the cursor from the leftmost column to the appropriate indentation
level? A perfectly reasonable strategy is to hit the space bar a sufficient number of times. With
most editors, you can use the Tab key instead. A tab moves the cursor to the next indentation
level. Some editors even have an option to fill in the tabs automatically.

While the Tab key is nice, some editors use tab characters for alignment, which is not so
nice. Python is very picky as to how you align the statements within a statement block. All of
the statements must be aligned with either blank spaces or tab characters, but not a mixture of
the two. In addition, tab characters can lead to problems when you send your file to another
person or a printer. There is no universal agreement on the width of a tab character, and some
software will ignore tab characters altogether. It is therefore best to save your files with spaces
instead of tabs. Most editors have a setting to automatically convert all tabs to spaces.

Look at the documentation of your development environment to find out how to activate
this useful setting.

Avoid Duplication in Branches

Look to see whether you duplicate code in each branch. If so, move it out of the if statement.
Here is an example of such duplication:

if floor > 13 :
actualFloor = floor - 1
print("Actual floor:", actualFloor)
else :
actualFloor = floor
print("Actual floor:", actualFloor)

The output statement is exactly the same in both branches. This is not an error —the program
will run correctly. However, you can simplify the program by moving the duplicated state-
ment, like this:

if floor » 13 :

actualFloor = floor - 1
else :

actualFloor = floor
print("Actual floor:", actualFloor)

31

3.2 Relational Operators 97

Removing duplication is particularly important when programs are maintained for a long
time. When there are two sets of statements with the same effect, it can easily happen that a
programmer modifies one set but not the other.

Conditional Expressions

Python has a conditional operator of the form
valuey if condition else value,

The value of that expression is either value; if the condition is true or value; if it is false. For
example, we can compute the actual floor number as

actualFloor = floor - 1 if floor > 13 else floor
which is equivalent to

if floor > 13 :
actualFloor = floor - 1
else :
actualFloor = floor
Note that a conditional expression is a single statement that must be contained on a single
line or continued to the next line (see Special Topic 2.3). Also note that a colon is not needed
because a conditional expression is not a compound statement.
You can use a conditional expression anywhere that a value is expected, for example:

print("Actual floor:", floor - 1 if floor > 13 else floor)

We don’t use the conditional expression in this book, but it is a convenient construct that you
will find in some Python programs.

3.2 Relational Operators

Use relational

operators

(< <= > >= == 15)

to compare numbers
and strings.

In this section, you will learn how
to compare numbers and strings in
Python.

Every if statement contains a condi-
tion. In many cases, the condition
involves comparing two values. For
example, in the previous examples we
tested floor > 13. The comparison > is
called a relational operator. Python
has six relational operators (see Table 1).

As you can see, only two Python
relational operators (> and <) look as
you would expect from the mathemati-
cal notation. Computer keyboar ds In Python, you use a relational operator to check
do not have keys for 2, <, or =, but whether one value is greater than another.
the >=, <=, and != operators are easy to
remember because they look similar. The == operator is initially confusing to most
newcomers to Python.

