226 Chapter 5 Functions

Function Comments

Whenever you write a function, you should comment its behavior. Comments are for human
readers, not compilers. Various individuals prefer different layouts for function comments. In
this book, we will use the following layout:

Function comments
explain the purpose of
the function, the meaning
of the parameter

Computes the volume of a cube.
@param sidelength the length of a side of the cube
@return the volume of the cube

/ variables and return
def cubeVolume(sideLength) : value, as well as any

volume = sidelength ** 3 special requirements.
return volume
This particular documentation style is borrowed from the Java programming language. It is
supported by a wide variety of documentation tools such as Doxygen (ww. doxygen .org), which
extracts the documentation in HTML format from the Python source.

Each line of the function comment begins with a hash symbol (#) in the first column. The
first line, which is indicated by two hash symbols, describes the purpose of the function. Each
@param clause describes a parameter variable and the @return clause describes the return value.

There is an alternative (but, in our opinion, somewhat less descriptive) way of documenting
the purpose of a Python function. Add a string, called a “docstring”, as the first statement of
the function body, like this:

def cubeVolume(sideLength) :
"Computes the volume of a cube."
volume = sidelLength ** 3
return volume

We don’t use this style, but many Python programmers do.
Note that the function comment does not document the implementation (how the function

does what it does) but rather the design (what the function does, its inputs, and its results). The
comment allows other programmers to use the function as a “black box”.

5.3 Parameter Passing

Parameter variables
hold the arguments
supplied in the
function call.

A recipe for a fruit pie may say to use any kind of fruit.
Here, “fruit” is an example of a parameter variable.
Apples and cherries are examples of arguments.

In this section, we examine the mechanism of parameter passing more closely. When
afunction is called, variables are created for receiving the function’s arguments. These
variables are called parameter variables. (Another commonly used term is formal
parameters.) The values that are supplied to the function when it is called are the
arguments of the call. (These values are also commonly called the actual parame-
ters.) Each parameter variable is initialized with the corresponding argument.

