d at
[ter
an

tis

ur

1€
rs

¢

Some functions may
not return a value,
but they can
praduce output.

5.5 Functions Without Return Values 237

Step 6 Testyour function.

Supply a program file for testing this function only:

from random import randint

def main() :
for 1 in range(10) :
print(insertAtRandom("arxcsw", "8")

def insertAtRandom(string, toInsert) :
n = len(string) :
r = randint{0, n)
result = ""

for i in range(r) :

result = result + string[i]
result = result + tolnsert
for i in range(r, n) :

result = result + string[i]

return result

main()
When you run this program, you might get an output such as

arxcsw8
arg8xcsw
arxc8sw
aBrxcsw
arxcswd
ar8xcsw
arxcsw8
a8rxcsw
8arxcsw
8arxcsw

The output shows that the second string is being inserted at an arbitrary position, including
the beginning and end of the first string.
See password. py in your source code for the complete program.

5.5 Functions Without Return Values

Sometimes, you need to carry out a
sequence of instructions that does
not yield a value. If that instruction
sequence occurs multiple times, you
will want to package it into a function.

Here is a typical example: Your task
is to print a string in a box, like this:

Some functions are called because they produce
output, even though they don't return a value.

238 Chapter5 Functions

However, different strings can be substituted for Hel1o. A function for this task can be
defined as follows:

def boxString(contents) :

Now you develop the body of the function in the usual way, by formulating a general
algorithm for solving the task.

Print a line that contains the - character n+ Z times, where n is the length of the string.
Print a line containing the contents, surrounded with a ! to the left and right.
Print another line containing the - character n + Z tiwmes.

Here is the function implementation:

Prints a string in a box.

@param contents the string to enclose in a box
#
def boxString(contents) :

n = len(contents) :

print("-" * (n + 2))

print("!" + contents + "!'")

print("-" * (n + 2))

Note that this function doesn’t compute any value. It performs some actions and
then returns to the caller. Actually, the function returns a special value, called None,
but there is nothing that you can do with that value.

Because there is no useful return value, don’t use boxString in an expression. You
can call

boxString("Hello")
but don’t call

result = boxString("Hello") # No—hboxString doesn’t return a useful result.

If you want to return from a function that does not compute a value before reaching
the end, you use a return statement without a value. For example,
def boxString(contents) :
n = len(contents)
ifn==20:
return # Return immediately
print("-" * (n + 2))
print("!" + contents + "!")
print("-" * (n + 2))

16. How do you generate the following printout, using the boxString function?

17. What is wrong with the following statement?
print(boxString("Hell0™))

18. Implement a function shout that prints a line consisting of a string followed by
three exclamation marks. For example, shout("He110") should print Hello! !1. The
function should not return a value.

5.6 Problem Solving: Reusable Functions 239

19. How would you modify the boxString function to leave a space around the string

that is being boxed, like this:

Practice It Now you can try these exercises at the end of the chapter: R5.6, P5.25.

5.6 Problem Solving: Reusable Functions

o e You have used many Python functions, both built-in and from the standard library.

code or pseudocode These functions have been provided as a part of the Python platform so that pro-
?V defining a grammers need not recreate them. Of course, the Python library doesn’t cover every
unction.

conceivable need. You will often be able to save yourself time by designing your own
functions that can be used for multiple problems.

When you write nearly identical code or pseudocode multiple times, either in the
same program or in separate programs, consider 1ntr0ducmg a functlon Here is a
typical example of code replication:

hours = int(input("Enter a value between 0 and 23: "))
while hours < 0 or hours > 23 :

print("Error: value out of range.")

hours = int(input("Enter a value between 0 and 23: "))

minutes = int(input("Enter a value between 0 and 59: "))
while minutes < 0 or minutes > 59 :

print("Error: value out of range.™)

minutes = int(input("Enter a value between 0 and 59: "))

This program segment reads two variables, making sure that each of them is within a
certain range. [t is easy to extract the common behavior into a function:

Prompts a user to enter a value up to a given maximum until the user provides
avalid input.
@param high an integer indicating the largest allowable input
@return the integer value provided by the user (between 0 and high, inclusive)
#
def readIntUpToChigh) :
value = int(input("Enter a value between 0 and " + str(high) + ": "))
while value < 0 or value > high :
print("Error: value out of range.")
value = int(input("Enter a value between 0 and " + strChigh) + ": "))

return value
Then use this function twice:

hours = readIntUpTo(23)
minutes = readIntUpTo(59)

We have now removed the replication of the loop—it only occurs once, inside the
function.

Note that the function can be reused in other programs that need to read integer
values. However, we should consider the possibility that the smallest value need not
always be zero.

