5.4 Return Values 229

variable, are removed. Any values that have been assigned to them are simply forgotten. Note
that total is not changed.

In Python, a function can never change the contents of a variable that was passed as an
argument. When you call a function with a variable as argument, you don’t actually pass the
variable, just the value that it contains.

5.4 Return Values

The return statement
terminates a function
call and yields the
function result.

You use the return statement to specify the result of a function. In the preceding
examples, each return statement returned a variable. However, the return statement
can return the value of any expression. Instead of saving the return value ina variable
and returning the variable, it is often possible to eliminate the variable and return the
value of a more complex expression:

def cubeVolume(sidelLength) :
return sidelLength ** 3

When the return statement is processed, the function exits immediately. Some

: b . . : Y
programmers find this behavior convenient for handling exceptional cases at the
beginning of the function:

def cubeVolume(sideLength)
if sideLength < 0 :
return 0
Handle the regular case.

If the function is called with a negative value for sideLength, then the function returns
0 and the remainder of the function is not executed. (See Figure 4.)

Every branch of a function should return a value. Consider the following incorrect
function:

def cubeVolume(sidelLength) :
if sidelLength >= 0 :
return sideLength ** 3
Error—no return value if sideLength < 0

True
ext 13A : sideLength < 0? return 0
Mewark Airport

THRU TRAFFIC
NEXT EXIT 3 MILES

Elizabeth Seaport

False

volume =
sideLength **3

return volume

Figured A return Statement Exits a Function Immediately

230 Chapter 5 Functions

SEL

Q:ké%:

Practice It

The compiler will not report this as an error. Instead, the special value None will be
returned from the function. A correct implementation is:

def cubeVolume(sidelLength) :
if sideLength »>= 0
return sidelLength ** 3
else :
return 0

Some programmers dislike the use of multiple return statements in a function. You

can avoid multiple returns by storing the function result in a variable that you return
in the last statement of the function. For example:

def cubeVolume(sideLength) :
if sideLength »>= 0:
volume = sidelLength ** 3
else :
volume = 0
return volume

See ch05/earthquake. py in your source code for a complete program that demonstrates
a function that returns a value.

13. Suppose we change the body of the cubeVolume function to
if sidelength <= 0 :
return 0
return sidelength ** 3
How does this function differ from the one described in this section?
14. What does this function do?
def mystery (n) :
ifn%?2 ==
return True

else :
return False

15. Implement the mystery function of Self Check 14 with a single return statement.

Now you can try these exercises at the end of the chapter: R5.12, P5.20.

Using Single-Line Compound Statements

Compounds statements in Python are generally written across several lines. The header is
on one line and the body on the following lines, with each body statement indented to the
same level. When the body contains a single statement, however, compound statements may
be written on a single line. For example, instead of constructing the following if statement:
if digit ==
return "one"

you can use the special single-line form because the body contains a single statement
if digit == 1 : return "one"
This form can be very useful in functions that select a single value from among a collection and
; ¥ . ! g 8
return it. For example, the single-line form used here

if digit == 1 : return "one"
if digit == 2 : return "two"
if digit == 3 : return "three"

HOW TO 5.1

Step 1

Step 2

Step 3

Step 4

if digit == 4 : return
if digit == 5 : return
if digit == 6 : return
if digit == 7 : return
if digit == 8 : return
if digit == 9 : return

produces condensed code that is easy to read.

"fFour"
"five"
"six"
"seven"
"eight”
"nine"

5.4 ReturnValues 231

Sometimes, the use of single-line compound statements can be distracting or cause the
5 A . . o . i, e i .
reader to accidentally skip over important details. Thus, in this book, we limit its use to if

statements that contain a return clause.

Implementing a Function

once, turn it into a function.

Problem Statement Suppose that you are helping archae-
ologists who research Egyptian pyramids. You have taken on
the task of writing a function that determines the volume of a
pyramid, given its height and base length.

Describe what the function should do.

A function is a computation that can be used multiple times with
different arguments, either in the same program or in different
programs. Whenever a computation may be needed more than

Provide a simple English description, such as “Compute the volume of a pyramid whose base

is a square.”

Determine the function’s “inputs”.

Make a list of all the parameters that can vary. It is common for

beginners to implement functions that are overly specific. For exam-
ple, you may know that the great pyramid of Giza, the largest of the

Turn computations
that can be reused
into functions.

Egyptian pyramids, has a height of 146 meters and a base length of

230 meters. You should ot use these numbers in your calculation, even if the original problem
only asked about the great pyramid. It is just as easy —and far more useful —to write a func-
tion that computes the volume of any pyramid. In our case, the parameters are the pyramid’s

height and base length.

Determine the types of the parameter variables and the return value.

The height and base length can both be floating-point numbers. The computed volume is also
a floating-point number, yielding a return type of float. Therefore, the documentation for the

function will be

Computes the volume of a pyramid whose base is square.
@param height a float indicating the height of the pyramid

@param baselength a float indicating the length of one side of the pyramid’s base

@return the volume of the pyramid as a float
and the function will be defined as
def pyramidvolume(height, baselength) :

Write pseudocode for obtaining the desired result.

In most cases, a function needs to carry out several steps to find the desired answer. You may
need to use mathematical formulas, branches, or loops. Express your function in pseudocode.

232 Chapter 5 Functions

Step 5

Step 6

An Internet search yields the fact that the volume of a pyramid is computed as
volume = 1/3 x height x base area

Because the base is 2 square, we have
base area = base length x base length

Using these two equations, we can compute the volume from the arguments.
Implement the function body.

In our example, the function body is quite simple. Note the use of the return statement to
return the result,

def pyramidvolume(height, baselLength) :
baseArea = baselength * baselLength
return height * baseArea / 3

Test your function.

After implementing a function, you should test it in isolation. Such a test is called a unit test.
Work out test cases by hand, and make sure that the function produces the correct results.

For example, for a pyramid with height 9 and base length 10, we expect the area to be
1/3 x 9% 100 = 300. If the height is 0, we expect an area of 0.

def main() :
print("volume:" + pyramidvolume(9, 10)
print("Expected: 300™)
print("Volume:" + pyramidvolume(0, 10)
print("Expected: 0")

The output confirms that the function worked as expected:

Volume: 300
Expected: 300
Volume: 0
Expected: 0

The complete program for calculating a pyramid’s volume is provided below.

ch05/pyramids.py
1 ##
2 # Thisprogram defines a function for calculating a pyramid’s volume and
3 # provides a unit test for the function.
4 #
5
6 def main() :
7 print("Volume:", pyramidvVolume(9, 10)
8 print("Expected: 300")
9 print("Volume:", pyramidvolume(0, 10)
10 print{"Expected: 0")

12 ## Computes the volume of a pyramid whose base is a square.
13 # @param height a float indicating the height of the pyramid

‘14 # @param baselength a float indicating the length of one side of the pyramid’s base

15 # @return the volume of the pyramid as a float

16 #

17 def pyramidvolume(height, baselength)
18 baseArea = baselLength * baselength
19 return height * baseArea / 3

20

21 # Start the program.

22 main()

5.4 Return Values 233

RKEV‘ EXAMPLE 5.1 Generating Random Passwords

Problem Statement Many web sites and software packages require you to create pass-
words that contain at least one digit and one special character. Your task is to write a program
that generates such a password of a given length. The characters should be chosen randomly.

Change Password
To protect the security of your account, please change your password freguently.

€ Learn more about Security Features and Protecting Your Account

Choosing a Password
When selecting your password, please keep the following in mind:
- Length. Use at least eight (8) characters without spaces.
Characters. Use at least one letter, one number, and one special character, excluding < \ >.

Content. Avoid numbers, names, or dates that are significant to you. For example, your phone number, first name, or
date of birth. Try to base your password on a memory aid.

Enter your current password:
Enter your new passweord: [
Retype your new passwaord: l

oo f cmce |

Step 1 Describe what the function should do.

The problem description asks you to write a program, not a function. We will write a
password-generating function and call it from the program’s main function.

Let us be more precise about the function. It will generate a password with a given number
of characters. We could include multiple digits and special characters, but for simplicity, we
decide to include just one of each. We need to decide which special characters are valid. For
our solution, we will use the following set:

+-F /7 A#S%&

The remaining characters of the password are letters. For simplicity, we will use only lower-
case letters in the English alphabet.

Step 2 Determine the function’s “inputs”.
There is just one parameter: the length of the password.
Step 3 Determine the types of the parameter variables and the return value.

At this point, we have enough information to document and specify the function header:

Generates a random password.

@param length an integer that specifies the length of the password

@return astring containing the password of the given length with cne
digit and one special character

#

def makePassword(length) :

Step 4 Write pseudocode for obtaining the desired result.

Here is one approach for making a password:

Make an empty string called password.

Randowly generate length - Z letters and append thew to password.
Randomly generate a digit and insert it at a randow location in password.
» Randomly genérate a sywmbol and insert it at a random location in password.

234 Chapter 5 Functions

Step 5

Step 6

How do we generate a random letter, digit, or symbol? How do we insert a digit or symbol in
a random location? We will delegate those tasks to helper functions. Each of those functions

starts a new sequence of steps, which, for greater clarity, we will place after the steps for this
function.

Implement the function body.

We need to know the “black box” descriptions of the two helper functions described in Step 4
(which we will complete after this function). Here they are:

Returns a string containing one character randomly chosen from a given string,
@param characters the string from which to randomly choose a character

@return a substring of length 1, taken at a random index
#

def randomCharacter(characters) :

Lnserts one string into another at a random position.
@param string the string into which another string is inserted
@param toInsert the string to be inserted

@return the string that results from inserting toInsert into string
#

def insertAtRandom(string, toInsert) :
Now we can translate the pseudocode in Step 4 into Python:
def makePassword(length) :
password = ""
for i in range(length - 2) :
password = password + randﬂmcharacter'("abcdefghijk]mnopqr‘stuvwxyz")

randomDigit = randomCharacter("0123456789")
password = insertAtRandom(password, randomDigit)

randomSymbol = randomCharacter("+-*/71@#3%&")
password = insertAtRandom{password, randomSymbol)

return password
Test your function.

Because our function depends on several helper functions, we must implement the helper
functions first, as described in the following sections. (If you are impatient, you can use the
technique of stubs that is described in Programming Tip 5.5.)

Here is a simple main function that calls the makePassword function:

def main() :

result = makePassword(8)
print(result)

Place all functions into a file named password.py. Add a call to main. Run the program a few
times. Typical outputs are

u@taqrsf
i?fsldgh
ot$3rvdy

Each output has length 8 and contains a digit and special symbol.

Repeat for the First Helper Function

Now it is time to turn to the helper function for generating a random letter, digit, or special
symbol.

5.4 Return Values 235

Step 1 Describe what the function should do.

How do we deal with the choice between letter, digit, or special symbol? Of course, we could
write three separate functions, but it is better if we can solve all three tasks with a single func-
tion. We could require a parameter, such as 1 for letter, 2 for digit, and 3 for special symbol. But
stepping back a bit, we can supply a more general function that simply selects a random char-
acter from any set. Passing the string "abcdefghi jkimnopgrstuvwxyz" generates a random lower-
case letter. To get a random digit, pass the string "0123456789" instead.

Now we know what our function should do. Given any string, it should return a random
character in it.

Step 2 Determine the function’s “inputs”.

The inputis any string,

Step 3 Determine the types of the parameter variables and the return value.

The input type is clearly a string, as is the return value.
The function header will be:

def randomCharacter(characters) :
Step4 Write pseudocode for obtaining the desired result.

i = length of the input string, charaeters
v = a randow integer beiween 0 and n - 1
return the substring of characters of length 1 that starts atr

A LR

PR

Step 5 Implement the function body.

Simply translate the pseudocode into Python:

def randomCharacter(characters) :
n = len(characters)
r = randint(0, n - 1)
return characters[r]

Step 6 Test your function.

Supply a program file for testing this function only:

from random import randint

def main() :
for i in range(10) :
print(randomCharacter("abcdef", end="")
print()

def randomCharacter(characters) :
n = len{characters) :
r = randint(0, n - 1)
return characters(r]

main()

When you run this program, you might get an output such as

afcdfeefac

This confirms that the function works correctly.

Repeat for the Second Helper Function

Finally, we implement the second helper function, which inserts a string containing a single
character at a random location in a string.

236 Chapter5 Functions

Step 1

Step 2

Step 3

Step 4

Step 5

Describe what the function should do.

Suppose we have a string "arxcsw" and a string "8". Then the second string should be inserted at
arandom location, returning a string such as "ar8xcsw” or "arxcsws". Actually, it doesn’t matter
that the second string has length 1, so we will simply specify that our function should insert an
arbitrary string into a given string.

Determine the function’s “inputs”.

The first input is the string into which another string should be inserted. The second input is
the string to be inserted.

Determine the types of the parameter variables and the return value.

The inputs are both strings, and the result is also a string, We can now fully describe our
function:

Lnserts one string into another at a random position.

@param string the string into which another string is inserted
@param toInsert the string to be inserted

@return astring that results from inserting toInsert into string
#

def insertAtRandom(string, toInsert) :
Write pseudocode for obtaining the desired result.

There is no predefined function for inserting a string into another. Instead, we need to find the
insertion position and then “break up” the first string by taking two substrings: the characters
up to the insertion position, and the characters following it.

How many choices are there for the insertion position? If string has length 6, there are
seven choices:

1. |arxcsw
.-a|rxcsw
. ar|xcsw
arx|csw
arxc|sw
arxcs |w
arxcsw|

~NOY U s WM

In general, if the string has length , there are 7 + 1 choices, ranging from 0 (before the start of
the string) to z (after the end of the string).
Here 1s the pseudocode:

n = length of the string
v = a randow integer between 0 and n (inclusive)
result = the eharacters in string from 0 1o r (exelusive) * tolnsert + the remainder of siring

Implement the function body.

Translate the pseudocode into Python:

def insertAtRandom(string, tolnsert) :
n = len(string)
r = randint(0, n)
result = "" !

for i in range(r) :

result = result + string[i]
result = result + toInsert
for i in range(r, n) :

result = result + string[i]

return result

5.5 Functions Without Return Values 237

Step6 Testyour function.

Supply a program file for testing this function only:

from random import randint

def mainQ) :
for i in range(10) :
print(insertAtRandom("arxcsw", "8")

def insertAtRandom(string, toInsert) :
n = len(string) :
r = randint(0, n)
result = ""

for i in range(r) :

result = result + string[i]
result = result + tolnsert
for i in range(r, n) :

result = result + string[i]

return result

main()
When you run this program, you might get an output such as

arxcsws
aréxcsw
arxc8sw
a8rxcsw
arxcsw8
ar8xcsw
arxcsw8
a8rxcsw
8arxcsw
8arxcsw

The output shows that the second string is being inserted at an arbitrary position, including
the beginning and end of the first string,
See password.py in your source code for the complete program.

5.5 Functions Without Return Values

Some functions may ~ Sometimes, you need to carry out a
not return a value, sequence of instructions that does
but they can not yield a value. If that instruction
Fraduce obipur, sequence occurs multiple times, you
will want to package it into a function.
Here is a typical example: Your task
is to print a string in a box, like this:

Some functions are called because they produce
output, even though they don’t return a value.

