226 Chapter 5 Functions

Function Comments

Whenever you write a function, you should comment its behavior. Comments are for human
readers, not compilers. Various individuals prefer different layouts for function comments. In
this book, we will use the following layout:

Function comments
explain the purpose of

the function, the meaning
of the parameter

Computes the volume of a cube.
@paran sideLength the length of a side of the cube
@return the volume of the cube

. variables and return
def cubeVYolume(sidelLength) : value, as well as any
volume = sideLength ** 3 special requirements.

return volume

This particular documentation style is borrowed from the Java programming language. It is
supported by a wide variety of documentation tools such as Doxygen (www. doxygen. org), which
extracts the documentation in HTML format from the Python source.

Each line of the function comment begins with a hash symbol (#) in the first column. The
first line, which is indicated by two hash symbols, describes the purpose of the function. Each
@param clause describes a parameter variable and the @return clause describes the return value.

There is an alternative (bu, in our opinion, somewhat less descriptive) way of documenting
the purpose of a Python function. Add a string, called a “docstring”, as the first statement of
the function body, like this:

def cubeVolume(sideLength) :
"Computes the volume of a cube."
volume = sidelLength #* 3
return volume

We don’t use this style, but many Python programmers do.

Note that the function comment does not document the implementation (how the function
does what it does) but rather the design (what the function does, its inputs, and its results). The
comment allows other programmers to use the function as a “black box”.

5.3 Parameter Passing

AR AR In this section, we examine the mechanism of parameter passing more closely. When

hold the arguments a function is called, variables are created for receiving the function’s arguments. These
?upplied inﬁhe variables are called parameter variables. (Another commonly used term is formal
unction call.

parameters.) The values that are supplied to the function when it is called are the
arguments of the call. (These values are also commonly called the actual parame-
ters.) Each parameter variable is initialized with the corresponding argument.

pielfruit)

" i

A recipe for a fruit pie may say to use any kind of fruit.
Here, “fruit” is an example of a parameter variable.
Apples and cherries are examples of arguments.

it

an

1
of

1€

Figure 3
Parameter Passing

|

SEL

5.3 Parameter Passing 227

o Function call

resultl =
resultl = cubeVolume(2)
sideLength =
@) Initializing function parameter variable E L
resultl = cubeVolume(2)
sidelength = 2
o About to return to the caller R iEL
volume = sidelLength ** 3 Bideenatiis 2
return volume
volume = 8
o After function call e 8

resultl = cubeVolume(2)

Consider the function call illustrated in Figure 3:
resultl = cubeVolume(2)

* The parameter variable sideLength of the cubevolume function is created when the

function is called. o

* The parameter variable is initialized with the value of the argument that was
passed in the call. In our case, sideLength is set to 2. @)

* The function computes the expression sideLength ** 3, which has the value 8. That
value is stored in the variable volume. €)

* The function returns. All of its variables are removed. The return value is trans-
ferred to the caller, that is, the function calling the cubeVolume function. The caller
puts the return value in the resultl variable. @)

Now consider what happens in a subsequent call, cubevolume(10). A new parameter
variable is created. (Recall that the previous parameter variable was removed when
the first call to cubevolume returned.) It is initialized with 10, and the process repeats.
After the second function call is complete, its variables are again removed.

10. What does this program print? Use a diagram like Figure 3 to find the answer.

def main() :
a=>5
b=7

print(mystery(a, b))

def mystery(x, y) :

Z=X+Y
z=2z /2.0
return z

main()

228 Chapter 5 Functions

11. What does this program print? Use a diagram like Figure 3 to find the answer.
def main() :
a=4
print(mystery(a + 1))

def mystery(x) :
y =X ¥*x
return y

main()

12. What does this program print? Use a diagram like Figure 3 to find the answer.

def mainQ :
a=>5
print(mystery(a))

def mystery(n) :
n=n+1
n=n+1
return n

main()

Practice It Now you can try these exercises at the end of the chapter: R5.4, R5.12, P5.8.

Do Not Modify Parameter Variables

In Python, a parameter variable is just like any other variable. You can modify the values of the
parameter variables in the body of a function. For example,

def totalCents(dollars, cents) :
cents = dollars * 100 + cents # Modifies parameter variable.
return cents

However, many programmers find this practice confusing (see Common Error 5.1). To avoid
the confusion, simply introduce a separate variable:

def totalCents{dollars, cents) :
result = dollars * 100 + cents
return result

Trying to Modify Arguments

The following function contains a common error: trying to modify an argument.

def addTax(price, rate) :
tax = price * rate / 100
price = price + tax # Has no effect outside the function.
return tax

Now consider this call:

total = 10
addTax(total, 7.5) -~ # Does not modify total.

When the addTax function is called, price is set to the value of total, that is, 10. Then price is
changed to 10.75. When the function returns, all of its variables, including the price parameter

5.4 Return Values 229

variable, are removed. Any values that have been assigned to them are simply forgotten. Note
that total is ot changed.

In Python, a function can never change the contents of a variable that was passed as an
argument. When you call a function with a variable as argument, you don’t actually pass the
variable, just the value that it contains.

5.4 Return Values

The return statement
terminates a function
call and yields the
function result.

You use the return statement to specify the result of a function. In the preceding
examples, each return statement returned a variable. Iowever, the return statement
can return the value of any expression. Instead of saving the return value in a variable
and returning the variable, it is often possible to eliminate the variable and return the
value of a more complex expression:

def cubeVolume(sideLength) :
return sideLength ** 3

When the return statement is processed, the function exits immediately. Some
programmers find this behavior convenient for handling exceptional cases at the
beginning of the function:
def cubeVolume(sidelLength)
if sidelLength < 0 :
return 0
Handle the regular case.

If the function is called with a negative value for sideLength, then the function returns
0 and the remainder of the function is not executed. (See Figure 4.)
Every branch of a function should return a valie. Consider the following incorrect
function:
def cubeVolume(sideLength) :
if sideLength >= 0 :
return sideLength ** 3
Error—no return value if sideLength < 0

True
THRU TRAFFIC et 13A ’ sideLength <0? return 0
NEXT EXIT 3 MILES Newark Airport
- Elizabeth Seaport
False
volume =

sidelLength #*3

return volume

Figure 4 = A return Statement Exits a Function Immediately

