222 Chapter 5 Functions

5.2 Implementing and Testing Functions

When defining

a function, you
provide a name for
the function and a
variable for each
argument.

In this section, you will learn how to implement a function from a given specification,
and how to call it with test inputs.

5.2.1 Implementing a Function

We will start with a very simple example: a function to
compute the volume of a cube with a given side length.

The cubeVoTlume function uses a given side
length to compute the volume of a cube.

When writing this function, you need to

* Pick a name for the function (cubeVolume).

* Define a variable for each argument (sideLength). These variables are called the
parameter variables.

Put all this information together along with the def reserved word to form the first
line of the function’s definition:

def cubeVo]ume(sideLength) :

This line is called the header of the function. Next, specify the body of the function.
The body contains the statements that are executed When the function is called.
The volume of a cube of side length s is s x s x s = s°. However, for greater clar-

ity, our parameter variable has been called sideLength, not s, so we need to compute

sideLength **
We will store this valueina vanable called volume:

volume = sidelLength ** 3
In order to return the result of the function, use the return statement:
return volume

The return statement gives the
function’s result to the caller.

5.2 Implementing and Testing Functions 223

A function is a compound statement, which requires the statements in the body to be
indented to the same level. Here is the complete function:
def cubeVolume(sidelength) :
volume = sidelength ** 3
return volume

5.2.2 Testing a Function

In the preceding section, you saw how to write a function. If you run a program con-

taining just the function definition, then nothing happens. After all, nobody is calling
the function.

In order to test the function, your program should contain

¢ 'The definition of the function.

* Statements that call the function and print the result.

Here iS SLlCh a4 program:

def cubeVolume(sidelLength) :
volume = sideLength ** 3
return volume

resultl = cubeVolume(2)

result2 = cubeVolume(10)

print("A cube with side length 2 has volume", resultl)
print("A cube with side length 10 has volume", result2)

Note that the function returns different results when it is called with different argu-
ments. Consider the call cubevolume(2). The argument 2 corresponds to the sideLength
parameter variable. Therefore, in this call, sideLength is 2. The function computes
sideLength ** 3, 0r 2 ** 3. When the function is called with a different argument, say 10,
then the function computes 10 ** 3,

Function Definition

SLUSER T T T I e . T S S s o e ST B B S A 2y

Syntax def functionName{parameterNamey, parameterNamey, . . .) :
statements

Nawe of function

Nawe of parameter variable

Function header.
\[def cubeVolume(sideLength) :

) volume = sideLength **
Function body,
executed when

function is called.

return volume

return statement
exits function and
refurns resuit.

!

‘ 4

224 Chapter 5

y

Functions

5.2.3 Programs that Contain Functions

When you write a program that contains one or more functions, you need to pay
attention to the order of the function definitions and statements in the program.
Have another look at the program of the preceding section. Note that it contains

* The definition of the cubevolume function.
* Several statements, two of which call that function.

As the Python interpreter reads the source code, it reads each function definition
and each statement. The statements in a function definition are not executed until the
function is called. Any statement not in a function definition, on the other hand, is
executed as it is encountered. Therefore, it is important that you define each function
before you call it. For example, the following will produce a compile-time error

print(cubeVolume(10))

def cubeVolume(sidelength) :
volume = sideLength ** 3
return volume

The compiler does not know that the cubevolume function will be defined later in the
program.

However, a function can be called from within another function before the former
has been defined. For example, the following is perfectly legal:

def main() :

result = cubeVolume(2)
print("A cube with side length 2 has volume", result)

def cubeVolume(sideLength) :
volume = sideLength ** 3
return volume

main()

Note that the cubevolume function is called from within the main function even though
cubevVolume is defined after main. To see why this is not a problem, consider the flow
of execution. The definitions of the main and cubevolume functions are processed. The
statement in the last line is not contained in any function. Therefore, it is executed
directly. It calls the main function. The body of the main function executes, and it calls
cubeVolume, which is now known.

Program with Functions

S e

Temcamner

By convertion, ; T
“main is the starting point ThF C“bEV_‘” ume
of the program. AR function is defined below. |
result = cubeVolume(2)

print("A cube with side length 2 has volume", result)

def cubeVolume(sidelLength) :
volume = sidelLength ** 3
This statement is outside return volume

any function definitions.

ay

on

he

on

he

€r

5.2 Implementing and Testing Functions 225

When defining and using functions in Python, it is good programming practice to
place all statements into functions, and to specify one function as the starting point.
In the previous example, the main function is the point at which execution begins.
Any legal name can be used for the starting point, but we chose main because it is the
required function name used by other common languages.

Of course, we must have one statement in the program that calls the main function.
That statement is the last line of the program, mainQ).

The complete program including comments is provided below. Note that both
functions are in the same file. Also note the comment that describes the behavior of
the cubeVolume function. (Programming Tip 5.1 describes the format of the comment.)

ch05/cubes.py

##
This program computes the volumes of two cubes.

def main() :
resultl = cubeVolume(?)
result2 = cubeVolume(10)
print{(" it 1
print{"A

|

, resultl)
', result2)

CONOOVTHRWN=-

10

11 ## Computes the volume of a cube.

12 # @param sidelength the length of a side of the cube
13 # @return the volume of the cube

14 3

15 def cubeVolume(sidelength) :
16 volume = sidelength #*#* °
17 return volume

18

19 # Start the program.

20 mainQ)

Program Run

A cube with side length 2 has volume 8
A cube with side length 10 has volume 1000

. What is the value of cubevolume(3)?
. What is the value of cubeVolume(cubevolume(2))?

7. Provide an alternate implementation of the body of the cubeVolume function that
does not use the exponent operator.

vi

=]

8. Define a function squareArea that computes the area of a square of a given side
length.

Qo

. Consider this function:

def mystery(x, y) :
result = (X +y) / {y - xX)
return result

What is the result of the call mystery(2, 3)?

Practice It Now you can try these exercises at the end of the chapter: R5.1, R5.2, P5.5, P5.22.

226 Chapter5 Functions

Function Comments

Whenever you write a function, you should comment its behavior. Comments are for human
readers, not compilers. Various individuals prefer different layouts for function comments. In
this book, we will use the following layout:

Function comments

explain the purpose of

the function, the meaning
of the parameter

Computes the volume of a cube.
@param sidelength the length of a side of the cube
@return the volume of the cube

) variables and return
def cubeVolume(sidelength) : ; value, as well as any
volume = sidelength ** 3 . special requirements.

return volume

This particular documentation style is borrowed from the Java programming language. It is
supported by a wide variety of documentation tools such as Doxygen (ww. doxygen.org), which
extracts the documentation in HTML format from the Python source.

Each line of the function comment begins with a hash symbol (#) in the first column. The
first line, which is indicated by two hash symbols, describes the purpose of the function. Each
@param clause describes a parameter variable and the @return clause describes the return value.

Thereis an alternative (but, in our opinion, somewhat less descriptive) way of documenting
the purpose of a Python function. Add a string, called a “docstring”, as the first statement of
the function body, like this:

def cubeVolume(sideLength) :
"Computes the volume of a cube."”
volume = sidelLength ** 3
return volume

We don’t use this style, but many Python programmers do.

Note that the function comment does not document the implementation (how the function
does what it does) but rather the design (what the function does, its inputs, and its results). The
comment allows other programmers to use the function as a “black box”.

5.3 Parameter Passing

Parameter variables
hold the arguments
supplied in the
function call.

A recipe for a fruit pie may say to use any kind of fruit.
Here, “fruit” is an example of a parameter variable.
Apples.and cherries are examples of arguments.

In this section, we examine the mechanism of parameter passing more closely. When
afunctionis called, variables are created for receiving the function’s arguments. These
variables are called parameter variables. (Another commonly used term is formal
parameters.) The values that are supplied to the function when it is called are the
arguments of the call. (These values are also commonly called the actual parame-
ters.) Each parameter variable is initialized with the corresponding argument.

pielfrutt)
/, .

,- n‘, o

:.’* ~ ' .:u
HHB

