
follows
led an

Ia new-

over
are

rt i ~ct
rptran

2.5 Input and Output 55

2.5 Input and Output

Jse the input
' ... nction to read
.. eyboard input.

Most interesting programs ask the program user to provide input values and produce
outputs that depend on the user input. In the following sections, you will sec how to
read user input and how to control the appearance of the output that your programs
produce.

2.5 .1 User Input

You can make your programs more flexible if you ask the program user for inputs
rather than using fixed values. Consider, for example, the i ni ti a 1 s. py program from
Section 2.4.4 that prints a pair of initials. The two names from which the initials are
derived arc specified as literal values. If the program user entered the names as inputs,
the program could be used for any pair of names.

When a program asks for user input, it should first print a message that tells the
user which input is expected. Such a message is called a prompt. In Python, display­
ing a prompt and reading the keyboard input is combined in one operation.

first a input("Enter your first name: ")

The input function displays the string argument in the console window and places the
cursor on the same line, immediately following the string.

Enter your first name: I
Note the space between the colon and the cursor. This is common practice in order to
visually separate the prompt from the input. After the prompt is displayed, the pro­
gram waits until the user types a name. After the user supplies the input,

Enter your first name: RodolfOI

the user presses the Enter key. Then the sequence of characters is returned from the
input function as a string. In our example, we store the string in the variable first so it
can be used later. The program then continues with the next statement.

The following version of the i ni ti a 1 s. py program is changed to obtain the two
names from the user.

ch02/initials2. py

1 ##
2 # This program obtaim two names from the user and prints a pa1r of initials.
3 #
4
5 # Obtain the two names from the user.
6 first • input(nr• ~~J ; f rs ~a~:

7 second • irput(rer your s1gnificart o\:'1er ' s firs t nam()
8
9 # Compute and d1splay the initials.

10 initials = first[] + "&" + second[]
11 print(initials)

Program Run

Enter your first name: Rodolfo
Enter your significant other's first name: Sally
R&S

56 Chapter 2 Programming with Numbers and Strings

To read an integer
or floating-point
value, use the input
function followed
by the i nt or float
function.

Figure 5

2.5.2 Numerical Input

The input function can only obtain a string of text from the user. But what if we need
to obtain a numerical value? Consider, for example, a program that asks for the price
and quantity of soda containers. To compute the total price, the number of soda con­
tainers needs to be an integer value, and the price per container needs to be a floating­
point value.

To read an integer value, first use the input function to obtain the data as a string,
then convert it to an integer using the i nt function.

userinput • input("Please enter the number of bottles: ")
bottles = int(userinput)

In this example, user Input is a temporary variable that is used to store the string repre­
sentation of the integer value (see Figure 5). After the input string is converted to an
integer value and stored in bottles, it is no longer needed.

To read a floating-point value from the user, the same approach is used, except the
input string has to be converted to a float.

userinput § input("Enter price per bottle: ")
price 2 float(userinput)

0 user Input • i nput("Pl ease enter the number of bottles: ")

0 userlnput • input("Please enter the number of bottles: ")

user!nput = 2 4

)
4Et oottles = int ,userlnput '

'--y------
24 _.,-

..- ---...... ""
bottl es • 24

Extracting an Integer Value

2. 5. 3 Formatted Output

When you print the result of a computation, you often want to control its appear­
ance. For example, when you print an amount in dollars and cents, you usually want
it to be rounded to two significant digits. That is, you want the output to look like

Price per liter: 1.22

instead of

Price per liter: 1.215962441314554

The following command displays the price with two digits after the decimal point:

print("%.2f" %price) I Prints 1.22

You can also specify a field width (the total number of characters, including spaces),
like this:

print("%10.2f" % price)

s

~need
:pnce
acon­
ating-

stnng,

rep re­
ito an

:pt the

appear­
lywant
like

1oint:

spaces),

2.5 Input and Output 57

Syntax 2. 3 String Format Operator

Use the string format
operator to specify
how values should be
formatted.

Syntax formatStnng " (value1, value2 , ••• , valuen)

The font~at strittQ ca" cotl'tai" otte or ~t~ore
forut specifiers atld literal characters. _

No paraethau .,.
to forwt a .._ vaM.

print(·~ ant1 t d ~o"a' · Lr . \ (quantity, total))
'-y-J '-v-' v

It Is COIIIteiOII to prlllt
a forutted 11rtiiQ.

~ fhe values to be font~atted. Each
For~t~at specifiers value replaces otte of ftle forut

specifiers i" ftle resultittQ strfrte;~.

The price is printed right-justified using ten characters: six spaces followed by the
four characters 1.22.

The argument passed to the print function

"%10.2f" % price

1 . 2 2

specifies how the string is to be formatted. The result is a string that can be printed or
stored in a variable.

You learned earlier that the% symbol is used to compute the remainder of floor
division, but that is only the case when the values left and right of the operator are
both numbers. If the value on the left is a string, then the% symbol becomes the string
format operator.

The construct %10 . 2f is called a format specifier: it describes how a value should be
formatted. The letter fat the end of the format specifier indicates that we are format­
ting a floating-point value. Used for an integer value and s for a string; see Table 9 on
page 59 for examples.

The format string (the string on the left side of the string format operator) can con­
tain one or more format specifiers and literal characters. Any characters that arc not
format specifiers are included verbatim. For example, the command

"Price per liter:%10.2f"% price

produces the string

"Price per liter: 1.22"

You can format multiple values with a single string format operation, but you must
enclose them in parentheses and separate them by commas. Here is a typical example:

print("Quantity: %d Total: %10.2f" % (quantity, total))

Q u a n t t y : 2 4 T o t a 1 1 7
~

2 9

No field wldttl was tpCCiftct
10 110 paddllle added

Twod~Qthafter
the dailllal polllt

58 Chapter 2 Programming with Numbers and Strings

The values to be formatted (quantity and total in this case) are used in the order listed.
That is, the first value is formatted based on the first format specifier (%d), the second
value (stored in price) is based on the second format specifier (%10. 2f), and so on.

When a field width is specified, the values are right-justified within the given num­
ber of columns. While this is the common layout used with numerical values printed
in table format, it's not the style used with string data. For example, the statements

title1 = "Quantity:"
title2 • "Price:"
print("%10s %10d" % (title1, 24))
print("%10s %10.2f"% (title2, 17.29))

result in the following output:

Quantity: 24
Price: 17.29

The output would look nicer, however, if the titles were left-justified. To specify left
justification, add a minus sign before the string field width:

print("%-10s %10d" % (title1, 24))
print("%-10s %10.2f"% (title2, 17.29))

The result is the far more pleasant

Quantity: 24
Price: 17.29

Our next example program will prompt for the price of a six-pack and the volume of
each can, then print out the price per ounce. The program puts to work what you just
learned about reading input and formatting output.

ch02/ volume2.py

1 fll
2 I This program prints the price per ounce for a six-pack of cans.
3 I
4
5 I Define constant for pack size.
6 CANS_PER_PACK = 5
7
8 I Obtain price per pack and can volume.
9 user!nput .. input ("Please enter the price for a six-pack: ")

10 packPrice • float (user!nput)
11
12 user!nput = input ("Please enter the volume for each can (in ounces): ")
13 canVolume .. float (user!nput)
14
1 5 # Compute pack volume.
16 packVo 1 ume = canVo 1 ume * CANS_PER_PACK
17
18 I Compute and print price per ounce.
19 pri cePerOunce = packPri ce I packVo 1 ume
20 pri nt ("Price per ounce .8.2f" % pricePerOunce)

Program Run

Please enter the price for a six-pack: 2.95
Please enter the volume for each can (in ounces): 12
Price per ounce: 0.04

is ted.
tcond
I

•• r num-
rinted
r

ts

fy left

tmeof
)U just

Format String

.. ~ ..

"%5d"

"%05d"

"Quantity:%5d"

"%f"

"%.2f"

"%7.2f"

u%s"

"%d %.2f"

"%9s"

"%-9s"

.. ~,,

2.5 Input and Output 59

Table 9 Format Specifier Examples

Sample Output

2 4

2 4

0 0 0 2 4

Q u a n t

1 2 1 9

1 2 2

1

H e 1 1 0

2 4 1

H

H e 1 1 0

; t y

9 7

2 2

2 2

e 1 1 0

Comments

Used with an integer.

Spaces are added so that the field width is 5.

If you add 0 before the field width, zeroes
are added instead of spaces.

2 4 Characters inside a format string but outside
a format specifier appear in the o utput.

U se f with a floating-point number.

Prints two digits after the decimal point.

Spaces are added so that the field width is 7.

Uses with a string.

You can format multiple values at once.

Strings are right-justified by default.

2 4 %

Use a negative field width to left-justify.

To add a percent sign to the output, use %X.

22. Write statements to prompt for and read the user's age.

23. What is problematic about the following statement sequence?
user!nput • input("P1ease enter the unit price: ")
unitPrice • int(userlnput)

24. What is problematic about the following statement sequence?
user!nput • input("Please enter the number of cans")
cans • int(userlnput)

2 s . What is the output of the following statement sequence?

volume • 10
print("The volume is %5d" %volume)

26. Using the string format operator, print the values of the variables bottles and
cans so that the output looks like this:
Bottles: 8
Cans: 24

The numbers to the right should line up. (You may assume that the numbers are
integers and have at most 8 digits.)

Practice It Now you can try these exercises at the end of the chapter: R2.1 0, P2.6, P2.7.

60 Chapter 2 Programming with Numbers and Strings

fU• ,.,, .. tlf "II •ll ~Ji ''1'~'1!~~~~ ':{l 11 ''ltf.:.Hf''~! 1 •(,

Programmi'ng ~Pi.?,~ .. · Don't Wait to Convert

When obtaining numerical values from input, you should convert the string representation to
the corresponding numerical value immediately after the input operation.

Obtain the string and save it in a temporary variable that is then converted to a number by
the next statement. Don't save the string representation and convert it to a numerical value
every time it's needed in a computation:

uni tPrice = input("Enter the unit price: ")
pricel • float(unitPrice)
pri ce2 • 12 * float (uni tPri ce) # Bad style

It is bad style to repeat the same computation multiple times. And if you wait, you could for­
get to perform the conversion.

Instead, convert the string input immediately to a number:

unitPricelnput = input("Enter the unit price: ")
uni tPri ce = float(uni tPri celnput) # Do this immediately after reading the input
pricel • unitPrice
price2 • 12 * unitPrice

Or, even better, combine the calls to input and float in a single statement:

uni tPrice = float(input ("Enter the unit price: "))

The string returned by the input function is passed directly to the float function, not saved in
a variable.

Writing Simple Programs

This How To shows you how to turn a problem statement into pseudocode and, ultimately, a
Python program.

Problem Statement Write a program that simulates a vending machine. A customer
selects an item for purchase and inserts a bill into the vending machine. The vending machine
dispenses the purchased item and gives change. Assume that all item prices arc multiples of 25
cents, and the machine gives all change in dollar coins and quarters. Your task is to compute
how many coins of each type to return.

Step 1 Understand the problem: What arc the inputs? What are the desired outputs?

In this problem, there are two inputs:

• The denomination of the bill that the customer inserts

• The price of the purchased item

A vending machine takes bills
and gives change in coins.

1ion to

~erby
value

1ld for-

2.5 Input and Output 6 1

There are two desired outputs:

• The number of dollar coins that the machine returns

• The number of quarters that the machine returns

Step 2 Work out examples by hand.

This is a very important step. If you can't compute a couple of solutions by hand, it's unlikely
that you' ll be able to write a program that automates the computation.

Let's assume that a customer purchased an item that cost $2.25 and inserted a $5 bill. The
customer is due $2.75, or two dollar coins and three quarters, in change.

That is easy for you to sec, but how can a Python program come to the same conclusion?
The key is to work in pennies, not dollars. The change due the customer is 275 pennies. Divid­
ing by 100 yields 2, the number of dollars. Dividing the remainder (75) by 25 yields 3, the
number of quarters.

Step 3 Write pseudocode for computing the answers.

In the previous step, you worked out a specific instance of the problem. You now need to
come up with a method that works in general.

Given an arbitrary item price and payment, how can you compute the coins due? First,
compute the change due in pennies:

aved in chattQe due • 1 00 JC bill value - lte~tt price itt pe1111les

ately, a

stomer
achine

es of25
.Jmpute

To get the dollars, divide by 100 and discard the fractional part:

dollar coiN • chattQe due divided by 100 !wittlout the fracti011al part)

If you prefer, you can use the Python symbol for floor division.

dollar coiN • chattQe due I I 1 0 0

But you don't have to. The purpose of pseudocode is to describe the computation in a humanly
readable form, not to usc the syntax of a particular programming language.

The remaining change due can be computed in two ways. If you are aware that one can
compute the remainder of a floor division (in Python, with the modulus operator), you can
simply compute

chattge due • re..alllder of dlvidiiiQ chaiiQe due by 1 00

Alternatively, subtract the penny value of the dollar coins from the change due:

chattge due • chattQe due - 1 00 JC dollar coiN

To get the quarters due, divide by 25:

quarters • chattge due I I 1.5

Step 4 Declare the variables and constants that you need, and decide what types of values they hold.

I I ere, we have five variables:

• billValue

• itemPrice

• changeDue

• dollarCoins

• quarters

Should we introduce constants to explain 100 and 25 as PENNIES_PER_DOLLAR and PENNIES_PER_
QUARTER? Doing so will make it easier to convert the program to international markets, so we
will take this step.

Because we usc floor division and the modulus operator, we want all values to be integers.

62 Chapter 2 Programming with Numbers and Strings

Step 5 Turn the pseudocode into Python statements.

If you did a thorough job with the pseudocode, this step should be easy. Of course, you have
to know how to express mathematical operations (such as floor division ~nd modulus) in
Python.

changeDue ~ PENNIES_PER_DOLLAR * billValue - itemPrice
dollarCoins ~ changeDue // PENNIES_PER_DOLLAR
changeDue ~ changeDue % PENNIES_PER_DOLLAR
quarters = changeDue // PENNIES_PER_QUARTER

Step 6 Provide input and output.

Before starting the computation, we prompt the user for the bill value and item price:

userlnput ~ input("Enter bill value (1 • $1 bill, 5 • SS bill, etc.): ")
billValue ~ int(userlnput)
userlnput = input("Enter item price in pennies: ")
itemPrice ~ int(userlnput)

When the computation is finished, we display the result. For extra credit, we format the out­
put strings to make sure that the output lines up neatly:

print("Dollar coins: %6d" % dollarCoins)
pri nt("Quarters: %6d" % quarters)

Step 7 Provide a Python program.

Your computation needs to be placed into a program. Find a name for the program that
describes the purpose of the computation. In our example, we will choose the name vending.

In the program, you need to declare constants and variables (Step 4), carry out computa­
tions (Step 5), and provide input and output (Step 6). Clearly, you will want to first get the
input, then do the computations, and finally show the output. Define the constants at the
beginning of the program, and define each variable just before it is needed.

Here is the complete program:

ch02/ vending.py

1
2
3
4
5
6
7
8

/Ill

This program simulates a vending machine th~n gives change.
II

II Define constants.
PENNIES_PER_DOLLAR = .00
PENNIES_PER_QUARTER ~ 25

9 # Obtain input from user.
10 userinput ~ input ("Enter bill val ue (1 .. Sl bill , 5 .. $5 bill, etc.): ")
11 billValue = i nt (userinput)
12 userinput = i nput ("Enter ltem price in pennies: ")
13 itemPrice = int (userinput)
14
15
16
17
18
19
20
21
22
23

II Compute change due.
changeDue = PENNIES_PER_DOLLAR * billValue - itemPrice
dollarCoins = changeDue // PENNIES_PER_DOLLAR
changeDue = changeDue % PENNIES_PER_DOLLAR
quarters = changeDue // PENNIES_PER_QUARTER

II Print change due.
pnnt ('Dollar coins: %6d" % dollarCoins)
pr nt (~·arters: %6d' %quarters)

tu have
t!us) in

te out-

n that
ing.
lputa­
et the
at the

Program Run

Enter bill val ue (1 D Sl bill , sa ss bill , etc .) : s
Ente r i t em price i n pennies : 225
Dollar coins : 2
Quarters: 3

Computing the Cos t of Stamps

2.5 Input and Output 63

Problem Statement Simulate a postage stamp vending machine. A customer inserts dol­
lar bills into the vending machine and then pushes a "purchase" button. The vending machine
gives out as many first-class stamps as the customer paid for, and returns the change in penny
(one-cent) stamps. A first-class stamp cost 44 cents at the time this book was written.

Step 1 Understand the problem: What are the inputs? What are the desired outputs?

In this problem, there is one input:

• The amount of money the customer inserts

There are two desired outputs:

• The number of first-class stamps the machine returns

• The number of penny stamps the machine returns

Step 2 Work out examples by hand.

Let's assume that a first-class stamp costs 44 cents and the customer inserts $1.00. That's
enough for two stamps (88 cents) but not enough for three stamps ($1.32). Therefore, the
machine returns two first-class stamps and 12 penny stamps.

Step 3 Write pseudocode for computing the answers.

Given an amount of money and the price of a first-class stamp, how can you compute how
many first-class stamps can be purchased with the money? Clearly, the answer is related to the
quotient

amount of money
price of first-class stamp

For example, suppose the customer paid $1.00. Use a pocket calculator to compute the quo­
tient: $1.00/$0.44 = 2.27.

How do you get "2 stamps" out of 2.27? It's the quotient without the fractional part. In
Python, this is easy to compute if both arguments are integers. Therefore, let's switch our
computation to pennies. Then we have

tllllllkr of first-class sfalltPS • 100 I .f.+ (wtfhovt re~~~abtderl

What if the user inputs two dollars? Then the numerator becomes 200. What if the price of a
stamp goes up? A more general equation is

""'"ber of first-class sfaiMJIS • 100 x dollan I price of first-class sfaiMps '" cetrts (wtfhovt re~~~ablderl

How about the change? Here is one way of computing it. When the customer gets the stamps,
the change is the customer payment, reduced by the value of the stamps purchased. In our
example, the change is 12 cents-the difference between 100 and 2 · 44. Here is the general
formula:

chat!QI • 100 x dollars - lllllllber of first-class sfalltPS x price of first-class sfa'"P

64 Chapter 2 Programming with Numbers and Strings

Step 4 Define the variables and constants that you need, and decide what types of values they hold.

Here, we have three variables:

• dollars

• firstClassStamps

• change

There is one constant, FIRST_CLASS_STAMP _PRICE.
The variable dollars and constant FIRST_CLASS_STAMP PRICE must be integers because the

computation of fi rstClassStamps uses floor division. The remaining variables are also integers,
counting the number of first-class and penny stamps.

Step 5 Turn the pseudocode into Python statements.

Our computation depends on the number of dollars that the user provides. Translating the
math into Python yields the following statements:

firstClassStamps = 100 * dollars // FIRST_CLASS_STAMP_PRICE
change= 100 ~ dollars - firstClassStamps * FIRST_CLASS STAMP_PRICE

Step 6 Provide input and output.

Before starting the computation, we prompt the user for the number of dollars and obtain the
value:

dollarStr = input("Enter number of dollars: ")
dollars = int(dollarStr)

When the computation is finished, we display the result.

print("Fi rst class stamps: %6d" ~ fi rstClassStamps)
pri nt("Penny stamps: %6d" ~ change)

Step 7 Write a Python program.

Here is the complete program:

ch02/ stamps.py

1
2
3
4
5
6
7
8

h
II This program simulates a stamp machine that receives Joll,\r bilb and
II dispenses first class and penny stamps.
II

Define the price of a stamp in pennies.
FIRST_CLASS_STAMP_PRICE = 4

9 II Obtain the number of dollars.
10 dollarStr = input ("Enter numbPr 1f dollars. ')
11 dollars = int (dollarStr)
12
13
14
15
16
17

tl Compute and print the number of stamps to dispense.
firstClassStamps = ~dollars// FIRST_CLASS_STAMP PRICE
change= *dollars - firstClassStamps * FIRST_CLASS_STAMP_PRICE
pr1nt(t ss s,1 ~s ol ~ firstClassStamps)
print(1ny sta ps: 6d % change)

Program Run

Enter number of dollars: 4
First class stamps: 9
Penny stamps: 4

had a V4
pete ag!
for eng
cess rmr

lnt~
College
to anal}'
pnme nc
ory pred
roundofl
gram d c
slower 1
neup. I

off beh
dard ze

t hold.

,usc the
Integers,

1ting the

tain the

2.6 Graphics: Simple Drawings 65

Comp11ting_& Socir;ty 2.2 The Pentium Floating-Point Bug

In 1994, Intel Corporation released what was
then its most powerful processor, the Pentium.
Unlike previous generat1ons of 1ts processors, it

rad a very fast floating-point unit. Intel's goal was to com­
::Jete aggressively with the makers of h1gher-end processors
'or engineering workstations. The Pentium was a huge suc­
cess immediately.

In the summer of 1994, Dr. Thomas Nicely of Lynchburg
College in Virginia ran an extensive set of computations
:o analyze the sums of reciprocals of certain sequences of
prime numbers. The results were not always what his the­
ory predicted, even after he took into account the inevitable
roundoff errors. Then Dr. Nicely noted that the same pro­
gram did produce the correct results when running on the
slower 486 processor that preceded the Pentium in Intel's
,neup. This should not have happened. The optimal round-

off behavior of floating-point calculations has been stan·
dardized by the Institute for Electrical and Electronic Engi·
'leers (IEEE) and Intel claimed to adhere to the IEEE standard
n both the 486 and the Pentium processors. Upon further

checking, Dr. Nicely discovered that indeed there was a very
small set of numbers for which the product of two num­
bers was computed differently on the two processors. For
example,

4,195,835 - ((4,195,835/ 3, 145,727) X 3, 145,727)

s mathematically equal to 0, and it did compute as 0 on a
486 processor. On his Pentium processor the result was 256.

As it turned out, Intel had independently discovered
the bug in its testing and had started to produce chips that
fixed it. The bug was caused by an error in a table that was
used to speed up the floating-point multiplication algorithm
of the processor. Intel determined that the problem was
exceedingly rare. They claimed that under normal use, a
typical consumer would only notice the problem once every
27,000 years. Unfortunately for Intel, Dr. Nicely had not
been a normal user.

Now Intel had a real problem on its hands. It figured that
the cost of replacing all Pentium processors that 1t had sold
so far would cost a great deal of money. Intel already had
more orders for the chip than it could produce, and it would
be particularly galling to have to give out the scarce chips as
free replacements instead of selling them. Intel's manage­
ment decided to punt on the 1ssue and initially offered to
replace the processors only for those customers who could
prove that their work required absolute prec1sion in math­
ematical calculations. Naturally, that did not go over well
with the hundreds of thousands of customers who had paid
retail prices of $700 and more for a Pentium chip and did not
want to live with the nagging feeling that perhaps, one day,
their income tax program would produce a faulty return.

Ultimately, Intel caved in to public demand and replaced
all defective chips, at a cost of about 4 75 million dollars.

Pentium FDIV error

. ~-:----r 1AO ~~~~!~~~~ ; ;=~~ ~ !~!
4195835+

This graph shows a set of numbers for which the original
Pentium processor obtained the wrong quotient.

2.6 Graphics: Simple Drawings
There are times when you may want to include simple draw­
ings such as figures, graphs, or charts in your programs.
Although the Python library provides a module for creating
full graphical applications, it is beyond the scope of this book.

To help you create simple drawings, we have included a
graphics module with the book that is a simplified version of
Python's more complex library module. The module code
and usage instructions are available with the source code for
the book on its companion web site. In the following sec­
tions, you will learn all about this module, and how to usc it
for creating simple drawings that consist of basic geometric
shapes and text.

You can make stmple
drawings out of lines,
rectangles, and circles.

