
48 Chapter 2 Programming with Numbers and Strings

The total time is the time for traversing both segments. The time to traverse the first segment is
simply the length of the segment divided by the speed: 6 km divided by 5 kml h, or 1.2 hours.

To compute the time for the second segment, we first need to know its length. It is the hypot­
enuse of a right triangle with side len ths 3 and 4.

Therefore, its length is 32 + 42 = 5. At 2 kmlh, it takes 2.5 hours to traverse it. That
makes the total travel time 3.7 hours.

This computation gives us enough information to devise an algorithm for the total travel
time with arbitrary arguments:

n111e for leQIIIeltt 1 • It I St
LeiiQ"ftl of seg111eltt t • square root of (dx - tl • dl
n ... e for leQIIIeltt t • leiiQ"ftl of leQIIIeltt t I Sz
fotal t1111e • t1111e for seg111etrt 1 • t1111e for seg111etrt t

Translated into Python, the computations are

segmentlTime a segmentllength I segmentlSpeed
segment2Length ; sqrt((xDistance - segmentllength) ** 2 + yDistance ** 2)
segment2Time = segment2Length I segment2Speed
totalTime • segmentlTime + segment2Time

Note that we use variable names that are longer and more descriptive than dx or s1• When you
do hand calculations, it is convenient to use the shorter names, but you should change them to
descriptive names in your program.

2.4 Strings

Strings are sequences
of characters.

Many programs process text, not numbers. Text
consists of characters: letters, numbers, punc­
tuation, spaces, and so on. A string is a sequence
of characters. For example, the string "He 11 o" is a
sequence of five characters.

2.4.1 The Strir'g Type

You have already seen strings in print statements such as

print("Hello")

A string can be stored in a variable

greeting - "Hello"

A string lite
denotes a p
string.

The len fu
returns the
of characte
a string.

concatena·
that is, to
together to
longer stn

lsegmem
1.2 hours

ihe hypot-

se it. That

oral travel

'hen you
ethem to

~tring literal
"Otes a particular
r ng.

-e len funct1on
..,.~c~rns the number
·characters in

i ~tri ng .

se the + operator to
. oncatenate strings;
·~at is, to put them
·;;~gether to yield a
.:.nger string.

2.4 Strings 49

and later accessed when needed just as numerical values can be:

pri nt(greeti ng)

A string literal denotes a particular string (such as "Hell o"), just as a number literal
(such as 2) denotes a particular number. In Python, string literals are specified by
enclosing a sequence of characters within a matching pair of either single or double
quotes.

print("This is a string.", 'So is this.')

By allowing both types of delimiters, P ython makes it easy to include an apostrophe
or quotation mark within a string.

message = 'He said "Hello"'

In this book, we use double quotation marks around strings because this is a common
convention in many other programming languages. However, the in teractive Python
interpreter always displays strings with single quotation marks.

The number of characters in a string is called the length of the string. For example,
the length of "Harry" is 5. You can compute the length of a string using Python's len
function:

length = len("World! ") # length is 6

A string of length 0 is called the empty string. It contains no characters and is written
as"" or • •.

2.4.2 Concatenation and Repetition

Given two strings, such as "Harry" and "Morgan", you can con caten ate them to one
long string. The result consists of all characters in the first string, followed by all
characters in the second string. In Python, you use the + operator to concatenate two
strings. For example,

firstName ="Harry"
lastName = "Morgan"
name= firstName + lastName

results in the string

"HarryMorgan"

What if you'd like the first and last name separated by a space? No problem:

name = firstName + " " + lastName

This statement concatenates three strings: fi rstName, the string literal " ", and 1 astName.
The result is

"Harry Morgan"

When the expression to the left or the right of a + operator is a string, the other one
must also be a string or a syntax error will occur. You cannot concatenate a string
with a numerical value.

You can also produce a string that is the result of repeating a string multiple times.
For example, suppose you need to print a dashed line. Instead of specifying a literal
string with 50 dashes, you can use the * operator to create a string that is comprised of
the string"- " repeated 50 times. For example,

dashes = "-" * 50

SO Chapter 2 Programming with Numbers and Strings

A string can be
repeated using the
*operator.

The int and float
functions convert
a string containing
a number to the
numencal value.

results in the string

A string of any length can be repeated using the * operator. For example, the
statements

message= "Echo ... "
print(message * 5)

display

Echo ... Echo ... Echo ... Echo ... Echo ...

The factor by which the string is replicated must be an integer value. The factor can
appear on either side of the>:· operator, but it is common practice to place the string on
the left side and the integer factor on the right.

2.4.3 Converting Between Numbers and Strings

Sometimes it is necessary to convert a numerical value to a string. For example, sup­
pose you need to append a number to the end of a string. You cannot concatenate a
string and a number:

name = "Agent " + 1729 II Error: Can only concatenate strings

Because string concatenation can only be performed between two strings, we must
first convert the number to a string.

To produce the string representation of a numerical value, use the str function.
The statement

str(1729)

converts the integer value 1729 to the string "1729". The str function solves our
problem:

id = 1729
name = "Agent " + str(id)

The str function can also be used to convert a floating-point value to a string.
Conversely, to turn a string containing a number into a numerical value, use the int

and float functions:

id = int("1729")
price = float("17.29")

This conversion is important when the strings come from user input (sec Section 2.5.1).
The string passed to the int or float functions can only consist of those characters

that comprise a literal value of the indicated type. For example, the statement

value = float("17x29")

will generate a run-time error because the letter "x" cannot be part of a floating-point
literal.

Blank spaces at the front or back will be ignored: i nt (" 1729 ") is still 1729.

2 .4 .4 Strings and Characters

Strings are sequences of Unicode characters (see Computing & Society 2.1). You car.
access the individual characters of a string based on their position within the string
This position is called the index of the character.

Stnng pos1t1
counted sta
withO.

nple, the

tctor can
1cnngon

1le, sup­
tenate a

e must

nction.

es our

•he int

~.5.1).
1cters

DO tnt

1 can
·mg.

.·nng positions are
counted starting

th 0.

The first character has index 0, the second has index 1,
and so on.

2.4 Strings 5 1

H a r r y

0 1 2 3 4

An individual character is accessed using a special subscript
notation in which the position is enclosed within square
brackets. For example, if the variable name is defined as

A string is a sequence of
characters.

name = "Harry"

the statements

first = name[O)
last .. name[4)

extract two different characters from the string. The first statement extracts the first
character as the string "H" and stores it in variable first. The second statement extracts
the character at position 4, which in this case is the last character, and stores it in vari­
able last.

~ a r r y
/ v I 2 3 4

first= H last = Y

The index value must be within the valid range of character positions or an "index
out of range" exception will be generated at run-time. The len function can be used to
determine the position of the last index, or the last character in a string.

pos = len(name) - 1 II Length of "Harry" is 5
last = name[pos) II last is set to "y"

The following program puts these concepts to work. The pro­
gram initializes two variables with strings, one with your name
and the other with that of your significant other. It then prints
out your initials.

The operation fi rst[O) makes a string consisting of one char­
acter, taken from the start of first. The operation second [O) does
the same for the second name. Finally, you concatenate the
resulting one-character strings with the string literal "&" to get a
string of length 3, the initials string. (See Figure 4.)

Figure4
Building the initials String

ch02/ initials.py
1

first=

second =

initials =

R 0 d
0 I 2

s a 1
0 I 2

R & S
0 I 2

2 II This program prints a pair of Initials.
3 I
4

0 1 f 0

3 4 5 6

1 y

3 4

Initials are formed
from the first letter
of each name.

52 Chapter 2 Programming with Numbers and Strings

5 # Set the names of the couple.
6 first % 'Rodolfo"
7 second % 'Sally"
8
9

10
11

Compute and display the initials.
initials = first[~) + "&' + second[)
print(initials)

Table 7 String Operations

Statement Result Comment

string • "Py" string is set to "Python" When applied to strings, + denotes
string • string + "than" concatenation.

print("Please" + Prints
" enter your name: ") Please enter your name:

Usc concatenation to break up strings
that don't fit into one line.

team • str(49) + "ers" team is set to "49e rs" Because 49 is an integer, it must be
converted to a string.

greeting • "H & S" n is set to 5 Each space counts as one character.
n • len(greeting)

chis set to "a" Note that the initial position is 0. string .. "Sally"
ch • stri ng[l]

last a string[len(string) - 1] last is set to the string containing The last character has position
the last character in string len(string) - 1.

2.4.5 String Methods

In computer programming, an object is a software entity that represents a value with
certain behavior. The value can be simple, such as a string, or complex, like a graphical
window or data file. You will learn much more about objects in Chapter 9. For now,
you need to master a small amount of notation for working with string objects.

The behavior of an object is given through its met hods. A method, like a fu nction,
is a collection of programming instructions that carry out a particular task. But unlike
a function, which is a standalone operation, a method can only be applied to an object
of the type for which it was defined. For example, you can apply the upper method to
any string, like this:

name = "John Smith"
uppercaseName% name .upper() #Sets uppercaseName to "JOHN SMITH"

Note that the method name follows the object, and that a dot (.) separates the object
and method name.

There is another string method called lower that y ields the lowercase version of a
string:

pri nt(name .lower()) # Prints john smi th

It is a bit arbitrary when you need to call a functio n (such as len(name)) and when y ou
need to call a method (name.lower()). You will s imply need to remember or look it up.

~

er.

lue with
aphical

=or now,
ts.
unction,
Jt unlike
m object
ethod to

te object

sion of a

1hen you
ok it up.

2.4 Strings 53

Just like function calls, method calls can have arguments. For example, the string
method replace creates a new string in which every occurrence of a given substring is
replaced with a second string. Here is a call to that method with two arguments:

name2 • name.replace("John", "Jane") #Sets name2 to "Jane Smith"

Note that none of the method calls change the contents of the string on which they
are invoked. After the call name.upper(), the name variable still holds "John Smith". The
method call returns the uppercase version. Similarly, the replace method returns a
new string with the replacements, without modifying the original.

Table 8 lists the string methods introduced in this section.

Method

s .lower()

s.upper()

s.replace(o/d, new)

Table 8 Useful String Methods

Returns

A lowercase version of strings.

An uppercase version of s.

A new version of strings in which every occurrence of
the substring old is replaced by the string new.

18. What is the length of the string "Python Program"?

19. Given this string variable, give a method call that returns the string "gram".

title - "Python Program"

20. Use string concatenation to turn the string variable title from Self Check 19 into
"Python P rog ramming".

21. What does the following statement sequence print?

string • "Harry"
n = len(string)
mystery • string[O] + string[n - 1]
print(mystery)

Practice It Now you can try these exercises at the end of the chapter: R2.7, R2.11, P2.15, P2.22.

Special Topic 2.4 Character Values

A character is stored internally as an integer value. The specific value used for a given character
is based on a standard set of codes. You can find the values of the characters that are used in
Western European languages in Appendix A. For example, if you look up the value for the
character "H", you can see that it is actually encoded as the number 72.

Python provides two functions related to character encodings. The ord function returns the
number used to represent a given character. The chr function returns the character associated
with a given code. For example,

print("The letter H has a code of", ord("H"))
print("Code 97 represents the character", chr(97))

produces the following output

The letter H has a code of 72
Code 97 represents the character a

54 Chapter 2 Programming with Numbers and Strings

Escape Sequences

To include a quotation mark in a literal string, precede it with a backslash (\),like this:

"He said \"Hello\'"'

The backslash is not included in the string. It indicates that the quotation mark that follows
should be a part of the string and not mark the end of the string. The sequence\" is called an
escape sequence.

To include a backslash in a string, use the escape sequence\\, like this:

"C: \\Temp\\Secret.txt"

Another common escape sequence is \n, which denotes a n ewline character. Priming a new­
line character causes the start of a new line on the display. For example, the statement

print("*\ n**\ n•**")

prints the characters

*
**

on three separate lines.

Computing & Society 2.1 International Alphabets and Unicode

The English alphabet is
pretty simple: upper- and
lowercase a to z. Other

European languages have accent marks
and special characters. For example,
German has three so-called umlaut
characters, a, o, u, and a double-s char­
acter B. These are not optional frills;
you couldn't wnte a page of German
text without using these characters
a few times. German keyboards have
keys for these characters.

The German Keyboard Layout

Many countries don't use the Roman
script at all. Russian, Greek, Hebrew,
Arabic, and Thai letters, to name just a
few, have completely different shapes.
To complicate matters, Hebrew and
Arabic are typed from right to left. Each
of these alphabets has about as many
characters as the English alphabet.

Hebrew, Arabic, and English

The Chinese languages as well as
Japanese and Korean use Chinese char­
acters. Each character represents an

acters. Over 70,000 ideographs are
known.

Starting in 1988, a consortium of
hardware and software manufactur­
ers developed a uniform encoding
scheme called Unicode that is capable
of encoding text in essentially all w rit­
ten languages of the world.

Today Unicode defines over
I 00,000 characters. There are
even plans to add codes for extinct
languages, such as Egyptian
hieroglyphics.

idea or thing. Words are made up of The Chinese Script
one or more of these ideographic char-

2

