
is another way of writing

total ; total * 2

2.3 Problem Solving: First Do It By Hand 45

Many programmers find this a convenient shortcut especially when incrementing or decre­
menting by 1:

count +; 1

If you like it, go ahead and use it in your own code. For simplicity, we won't use it in this book.

Line Joining

If you have an expression that is too long to fit on a single line, you can continue it on another
line provided the line break occurs inside parentheses. For example,

xl • ((-b + sqrt(b ** 2 - 4 * a * c))
I (2 * a)) # ()k

However, if you omit the outermost parentheses, you get an error:

xl E (-b + sqrt(b ** 2 - 4 * a * c))
I (2 * a) I Error

The first line is a complete statement, which the Python interpreter processes. The next line,
I (2 * a), makes no sense by itself.

There is a second form of joining long lines. If the last character of a line is a backs lash, the
line is joined with the one following it:

xl • (-b + sqrt(b ** 2 - 4 * a * c)) \
I (2 * a) I ()k

You must be very careful not to put any spaces or tabs after the backslash. In this book, we
only use the first form of line joining.

oblem Solving: f irst D<;>lt By Hand
In the preceding section, you learned how to express computations in Python. When
you are asked to write a program for solving a problem, you may naturally think
about the Python syntax for the computations. However, before you start program­
ming, you should first take a very important step: carry out the computations by
hand. If you can't compute a solution yourself, it's unlikely that you'll be able to
write a program that automates the computation.

To illustrate the use of hand calculations, consider the following problem: A row
of black and white tiles needs to be placed along a wall. For aesthetic reasons, the
architect has specified that the first and last tile shall be black.

Your task is to compute the number of tiles needed and the gap at each end, given
the space available and the width of each tile.

Oap

46 Chapter 2 Programming with Numbers and Strings

Pick concrete values
for a typ1cal situation
to use in a hand
calculation.

To make the problem more concrete, let's assume the following dimensions:

• Total width: 100 inches

• Tile width: 5 inches

The obvious solution would be to fill the space with 20 tiles, but that would not
work- the last tile would be white.

Instead, look at the problem this way: The first tile must always be black, and then
we add some number of white/black pairs:

IILIIILIIILIIILIII
The first tile takes up 5 inches, leaving 95 inches to be covered by pairs. Each pair is
10 inches wide. Therefore the number of pairs is 95 I 10 = 9.5. However, we need to
discard the fractional part since we can't have fractions of tile pairs.

Therefore, we will use 9 tile pairs or 18 tiles, plus the initial black tile. Altogether,
we require 19 tiles.

The tiles span 19 x 5 = 95 inches, leaving a total gap of 100-19 x 5 = 5 inches.
The gap should be evenly distr1buted at both ends. At each end, the gap is

(100-19 x 5) I 2 = 2.5 inches.
This computation gives us enough information to devise an algorithm with arbi-

trary values for the total width and tile width.

tiUlttber of pairs • ilrteger part of I total widftl - tile wldftll I It x tile widftll
"ulttber of tiles • 1 + t x "ut~tber of pairs
gap at each ettd • I total wldftl - "UIItber of tiles x tile wldftll I t

As you can see, doing a hand calculation gives enough insight into the problem that it
becomes easy to develop an algorithm.

1 3. Translate the pseudocode for computing the number of tiles and the gap width
into Python.

14. Suppose the architect specifics a pattern with black, gray, and white tiles, like
this:

Again, the first and last tile should be black. How do you need to modify the
algorithm?

1 s. A robot needs to tile a floor with alternating black and white tiles. Develop
an algorithm that yields the color (0 for black, 1 for white), given the row and
column number. Start with specific values for the row and column, and then
generalize.

not

then

tr IS

d to

·her,

p IS

rbi-

l tlt

2.3 Problem Solving: First Do It By Hand 47

rz: 16. --
l hz:

~~ ~ 1 7.

For a particular car, repair and maintenance costs in year 1 are estimated at $1 00;
in year 10, at $1,500. Assuming that the repair cost increases by the same amount
every year, develop pseudocode to compute the repair cost in year 3 and then
generalize to yearn.

The shape of a bottle is approximated by two cylinders of radius r 1 and r2 and
heights h 1 and h2, joined by a cone section of height h3.

I I I Using the formulas for the volume of a cylinder, V = rrr2 h, and a cone section,

hi h2 + r1r2 + r})h v = 1r _,__ _ _ __ ...!___

3 ,

develop pseudocode to compute the volume of the bottle. Using an actual bottle
r1 with known volume as a sample, make a hand calculation of your pseudocode.

Practice It Now you can try these exercises at the end of the chapter: R2.15, R2.17, R2.18.

WORKED EXAMP LE. 2.1 Computing Travel Time

Problem Statement A robot needs to retrieve an item that is
located in rocky terrain next to a road. The robot can travel at a
faster speed on the road than on the rocky terrain, so it will want
to do so for a certain distance before moving in a straight line to the
item. Calculate by hand how much time it takes to reach the item.

~~~·w -:~··11o 
• . • I , • ....,. ... ,,',. 

~· .~ .. . ·: ~ 

Your task is to compute the total time taken by the robot to reach its goal, given the following 
inputs: 

• The distance between the robot 
and the item in the x- and 
y-direction (dx and dy) 

• The speed of the robot on the 
road and the rocky terrain 
(s1 and s2) 

• The length l 1 of the first segment 
(on the road) 

To make the problem more 
concrete, let's assume the following 
dimensions: 

dx 

IOkm 



48 Chapter 2 Programming with Numbers and Strings 

The total time is the time for traversing both segments. The time to traverse the first segment is 
simply the length of the segment divided by the speed: 6 km divided by 5 kmlh, or 1.2 hours. 

To compute the time for the second segment, we first need to know its length. It is the hypot­
enuse of a right triangle with side len ths 3 and 4. 

Therefore, its length is 32 + 42 = 5. At 2 km/h, it takes 2.5 hours to traverse it. That 
makes the total travel time 3.7 hours. 

This computation gives us enough information to devise an algorithm for the total travel 
time with arbitrary arguments: 

fi111e for SI!QIIIellt l • It I St 
Lettqftl of seg111e11t t • square root of (dx - It )t + d'/ 
fi111e for seg111e11t t • lettqftl of seg111e11t t I •: 
fotal fi111e • fi111e for seg111e11t t + fi111e for seg111e11t t 

Translated into Python, the computations are 

segmentlTime % segmentllength I segmentlSpeed 
segment2Length % sqrt((xOistance - segmentllength) ** 2 + yOistance ** 2) 
segment2Time % segment2Length I segment2Speed 
totalTime % segmentlTime + segment2Time 

Note that we use variable names that are longer and more descriptive than dx or s1• When you 
do hand calculations, it is convenient to use the shorter names, but you should change them to 
descriptive names in your program. 

2.4 Strings 

Strings are sequences 
of characters. 

Many programs process text, not numbers. Text 
consists of characters: letters, numbers, punc­
tuation, spaces, and so on. A string is a sequence 
of characters. For example, the string "Hello" is a 
sequence of five characters. 

2 .4.1 The String Type 

You have already seen strings in print statements such as 

print("Hello") 

A string can be stored in a variable 

greeting = "Hello" 



D 

A string literal 
denotes a particular 
string. 

The len funct1on 
returns the number 
of characters in 
a string. 

... se the+ operator to 
concatenate strings; 
•11at is, to put them 
·ogether to y1eld a 
longer string. 

2.4 Strings 49 

and later accessed when needed just as numerical values can be: 

print(greeting) 

A string literal denotes a particular string (such as "Hello"), just as a number literal 
(such as 2) denotes a particular number. In Python, string literals are specified by 
enclosing a sequence of characters within a matching pair of either single or double 
quotes. 

print("This is a string.", 'So is this.') 

By allowing both types of delimiters, Python makes it easy to include an apostrophe 
or quotation mark within a string. 

message = 'He said "Hello"' 

In this book, we use double quotation marks around strings because this is a common 
convention in many other programming languages. H owever, the interactive Python 
interpreter always displays strings with single quotation marks. 

The number of characters in a string is called the length of the string. For example, 
the length of "Harry" isS. You can compute the length of a string using Python's len 

function: 

length= len("World!") II length is 6 

A string of length 0 is called the empty string. It contains no characters and is written 
as"" or' •. 

2.4.2 Concatenation and Repetition 

Given two strings, such as "Harry" and "Morgan", you can concatenate them to one 
long string. The result consists of aJI characters in the first string, followed by all 
characters in the second string. In Python, you usc the+ operator to concatenate two 
strings. For example, 

firstName = "Harry" 
lastName = "Morgan" 
name = firstName + lastName 

results in the string 

"HarryMorgan" 

What if you'd like the first and last name separated by a space? No problem: 

name = firstName + " " + lastName 

This statement concatenates three strings: fi rstName, the string literal" ",and lastName. 

The result is 

"Harry Morgan" 

When the expression to the left or the right of a + operator is a string, the other one 
must also be a string or a syntax error will occur. You cannot concatenate a string 
with a numerical value. 

You can also produce a string that is the result of repeating a string multiple times. 
For example, suppose you need to print a dashed line. Instead of specifying a literal 
string with SO dashes, you can use the* operator to create a string that is comprised of 
the string"-" repeated SO times. For example, 

dashes = "-" * SO 


