
2.2 Arithmetic 37

This is particularly important when programs are written by more than one person. It may
be obvious to you that cv stands for can volume and not current velocity, but will it be obvious
to the person who needs to update your code years later? For that matter, will you remember
yourself what cv means when you look at the code three months from now?

Do Not Use Magic Numbers

A magic number is a numeric constant that appears in your code without explanation. For
example,

totalVolume • bottles * 2

Why 2? Are bottles twice as voluminous as cans? No, the reason
is that every bottle contains 2 liters. Use a named constant to
make the code self-documenting:

BOTTLE_VOLUME • 2.0
totalVolume = bottles * BOTTLE_VOLUME

There is another reason for using named constants. Suppose
circumstances change, and the bottle volume is now 1.5 liters.
If you used a named constant, you make a single change, and
you are done. Otherwise, you have to look at every value of 2 in
your program and ponder whether it meant a bottle volume or

We prefer programs that
are easy to understand
overthosethatappear
to work by magic.

something else. In a program that is more than a few pages long, that is incredibly tedious and
error-prone.

Even the most reasonable cosmic constant is going to change one day. You think there are
365 days per year? Your customers on Mars are going to be pretty unhappy about your silly
prejudice. Make a constant

DAYS_PER YEAR • 365

Arithmetic
In the following sections, you will learn how to carry out arithmetic calculations
in Python.

2.2 .l Basic Arithmetic Operations

Python supports the same four basic arithmetic operations as a calculator-addition,
subtraction, multiplication, and division-but it uses different symbols for multipli­
cation and division.

You must write a * b to denote multiplication. Unlike in mathematics, you cannot
write a b, a · b, or a x b. Similarly, division is always indicated with a 1, never a+ or a
fraction bar.

a+b
For example, -

2
- becomes (a + b) I 2.

The symbols + - * 1 for the arithmetic operations are called operators. The com­
bination of variables, literals, operators, and parentheses is called an expression . For
example, (a + b) I 2 is an expression.

38 Chapter 2 Programming with Numbers and Strings

Mixing integers and
floating-point values
in an arithmetic
expression yields a
floating-point value.

Parentheses are used just as in algebra: to indicate in which order the parts of the
expression should be computed. For example, in the expression (a + b) I 2, the sum
a + b is computed first, and then the sum is divided by 2. In contrast, in the expression

a + b I 2

only b is divided by 2, and then the sum of a and b 1 2 is formed. As in regular algebraic
notation, multiplication and division have a higher precedence than addition and sub­
traction. For example, in the expression a + b I 2, the I is carried out first, even though
the+ operation occurs further to the left. Again, as in algebra, operators with the same
precedence are executed left-to-right. For example, 10 - 2 - 3 is 8-3 or 5.

If you mix integer and floating-point values in an arithmetic expression, the result
is a floating-point value. For example, 7 + 4.0 is the floating-point value 11.0.

2.2.2 Powers

Python uses the exponential operator** to denote the power operation. For example,
the Python equivalent of the mathematical expression a2 is a ** 2. Note that there can
be no space between the two asterisks. As in mathematics, the exponential operator
has a higher order of precedence than the other arithmetic operators. For example,
10 " 2 ** 3 is 10 · 23 = 80. Unlike the other arithmetic operators, power operators are
evaluated from right to left. Thus, the Python expression 10 ** 2 ** 3 is equivalent to
10(23

) = 108 = 100,000,000.
In algebra, you use fractions and exponents to arrange expressions in a com­

pact two-dimensional form. In Python, you have to write all expressions in a linear
arrangement. For example, the mathematical expression

becomes

bx(1+-r)n
100

b * (1 + r I 100) ** n
Figure 3 shows how to analyze such an expression.

b * (1 + r I 100) ** n
'---y---J

r
100

'---v-----'
r

1+-
100

(
1 + -.2:_)n

100

bx(1 +-r)n
100

Figure 3 Analyzing an Expression

2.2 .3 Floor Division and Remainder

When you divide two integers with the I operator, you
get a floating-point value. For example,

7 I 4

yields 1.75. H owever, we can also perform floor divi­
sion using the 11 operator. For positive integers, floor
division computes the quotient and discards the frac-
tional part. The floor division

7 I I 4

evaluates to 1 because 7 divided by 4 is 1.75 with a frac­
tional part of 0.75 (which is discarded).

If you are interested in the remainder of a floor divi­
sion, use the% operator. The value of the expression

7 % 4

2.2 Arithmetic 39

. ,

. ~ "1'·-.- . "0 } ;~
i,• ~o. ,· ~i~~' •'. ., . r-··~ ...

;__,,

Floor division and the %
operator yield the dollar and
cent values of a piggybank
full of pennies.

is 3, the remainder of the floor division of 7 by 4. The% symbol has no analog in alge­
bra. It was chosen because it looks similar to 1, and the remainder operation is related
to division. The operator is called m odulus. (Some people call it modulo or mod.) It
has no relationship with the percent operation that you find on some calculators.

Here is a typical use for the I I and% operations. Suppose you have an amount of
pennies in a piggybank:

pennies = 1729

You want to determine the value in dollars and cents. You obtain the dollars through
a floor division by 100:

do 11 ars = pennies I I 100 # Sets dollars to 17

The floor division discards the remainder. To obtain the remainder, use the% operator:

cents • pennies % 100 # Sets cents to 29

See Table 3 for additional examples.
Floor d ivision and modulus are also defined for negative integers and floating­

point numbers. However, those definitions are rather technical, and we do not cover
them in this book.

Table 3 Floor Div ision and Remainder

Expression Value Comment
ere n _. 1729)

n% 10

n II 10

n% 100

n " 2

-n I I 10

9

172

29

1

-173

For any positive integer n, n " 10 is the last digit of n.

This is n without the last digit.

The last two digits of n.

n % 2 is 0 if n is even, 1 if n is odd (provided n is not negative)

-173 is the largest integer s -172.9. We will not use floor division for
negative numbers in this book.

40 Chapter 2 Programming with Numbers and St rings

A function can return
a value that can be
used as if it were a
literal value.

2.2.4 Calling Functions

You learned in Chapter 1 that a function is a collection of programming instruc­
tions that carry out a particular task. We have been using the print function to display
information, but there are many other functions available in Python. In this section,
you will learn more about functions that work with numbers.

Most functions return a value. That is, when the function completes its task, it
passes a value back to the point where the function was called. One example is the abs
function that returns the absolute value-the value without a sign- of its numerical
argument. For example, the call abs(-173) returns the value 173.

The value returned by a function can be stored in a variable:

distance = abs(x)

In fact, the returned value can be used anywhere that a value of the same type can be
used:

print("The distance from t he origin is", abs(x))

The abs function requires data to perform its task, namely the number from which to
compute the absolute value. As you learned earlier, data that you provide to a func­
tion arc the arguments of the call. For example, in the call

abs(-10)

the value -10 is the argument passed to the abs function.
When calling a function, you must provide the correct number of arguments. The

abs function takes exactly one argument. If you call

abs(-10, 2)

or

abs()

your program will generate an error message.
Some functions have optional arguments that you only provide in certain situa­

tions. An example is the round function. When called with one argument, such as

round(7.625)

the function returns the nearest integer; in this case, 8. When called with two argu­
ments, the second argument specifies the desired number of fractional digits.

Syntax 2. 2 Calling Functions

This argu~ttettt is passed to the futtetlott.

\
distance = abs (x)

£ach of theu futtetlott ~
ealls retunls a value. <-__

tax = round(price *

Argu~ttetrts ea" be expresslottS. ~

1'hls Is a11 optioMJ argu!Mirt
of ftle round f1MCtiotl.

rate, 2)
I

best= Mln(price1, price2, price3, price4)

2.2 Arithmetic 41

Table 4 Built-in Mathematical Functions

Function

abs(x)

round(x)
round(x, n)

max(x1,x2, ••• ,Xn)

min(x1, x2 , ••• , Xn)

For example,

round(7.625, 2)

is 7.63.

Returns

The absolute value of x.

The floating-point value x rounded to a whole number
or to n decimal places.

The largest value from among the arguments.

The smallest value from among the arguments.

There are two common styles for illustrating optional arguments. One style, which
we usc in this book, shows different function calls with and without the optional
arguments.

round(x) I Returns x rounded to a whole number.
round(x, n) # Returns x rounded ton decimal places.

The second style, which is used in Python's standard documentation, uses square
brackets to denote the optional arguments.

round(x[, n]) # Returns x rounded to a whole number or ron decimal places.

Finally, some functions, such as the max and min functions, take an arbitrary number of
arguments. For example, the call

cheapest • min(7.25, 10.95, 5.95, 6.05)

sets the variable cheapest to the minimum of the function's arguments; in this case, the
number 5.95.

Table 4 shows the functions that we introduced in this section.

2.2.5 Mathematical Functions

The Python language itself is relatively simple, but Python contains a standard library
that can be used to create powerful programs. A librar y is a collection of code that
has been written and translated by someone else, ready for you to use in your pro­
gram. A standard library is a library that is considered part of the language and must
be included with any Python system.

Python's standard library is organized into m odules. Related functions and data
types arc grouped into the same module. Functions defined in a module must be
explicitly loaded into your program before they can be used. Python's math module
includes a number of mathematical functions. To usc any function from this module,
you must first import the function. For example, to use the sqrt function, which com­
putes the square root of its argument, first include the statement

from math import sqrt

at the top of your program file. Then you can simply call the function as

y = sqrt(x)

42 Chapter 2 Programming with Numbers and St rings

Table 5 Selected Functions in the mat h Module

Function

sqrt(x)

trunc(x)

cos(x)

sin(x)

tan(x)

exp(X)

degrees(x)

radians(x)

log(x)
log(x, base)

Returns

The square root of x. (x ~ 0)

Truncates floating-point value x to an integer.

The cosine of x in radians.

The sine of x in radians.

The tangent of x in radians.

Convert x radians to degrees (i.e., returns x · 1801 rr)

Convert x degrees to radians (i.e., returns x · rrl180)

The natural logarithm of x {to base e) or the logarithm
of x to the given base.

Table 5 shows additional functions defined in the math module.
While most functions are defined in a module, a small number of functions (such

as print and the functions introduced in the preceding section) can be used without
importing any module. These functions are called b uilt-in functions because they are
defined as part of the language itself and can be used directly in your programs.

Mathematical
Expression

x+y

2

(l+~)n 100

Ja2 + b2

Table 6 Arithmetic Expression Examples

Python
Expression

(x + y) I 2

X * y I 2

(1 + r I 100) ** n

sqrt(a ** 2 + b ** 2)

pi

Comments

The parentheses are required;

x + y 1 2 computesx + 1·
Parentheses are not required; operators with
the same precedence are evaluated left to right.

The parentheses are required.

You must import the sqrt function from the
math module.

pi is a constant declared in the math module.

8 . A bank account earns interest once per year. In Python, how do you compute
the interest earned in the first year? Assume variables percent and balance both
contain floating-point values.

9. In Python, how do you compute the side length of a square whose area is stored
in the variable area?

2.2 Arithmetic 43

1 o. The volume of a sphere is given by

4
V = - nr3

3

If the radius is given by a variable radius that contains a floating-point value,
write a Python expression for the volume.

11 . What is the value of 1729 I I 10 and 1729 % 10?

12. If n is a positive number, what is (n I I 10) % 10?

Practice It Now you can try these exercises at the end of the chapter: R2.3, R2.5, P2.4, P2.5.

Roundoff Errors

Roundoff errors are a fact of life when calculating with floating-point numbers. You probably
have encountered that phenomenon yourself with manual calculations. If you calculate 1/3 to
two decimal places, you get 0.33. Multiplying again by 3, you obtain 0.99, not 1.00.

In the processor hardware, numbers are represented in the binary number system, using
only digits 0 and 1. As with decimal numbers, you can get roundoff errors when binary digits
are lost. They just may crop up at different places than you might expect.

Here is an example:

price • 4.35
quantity • 100
total • price * quantity I Should be 100 * 4.35 ~ 435
print(total) I Prints 434.99999999999994

In the binary system, there is no exact representation for 4.35, just as there is no exact repre­
sentation for 1/3 in the decimal system. The representation used by the computer is just a
little less than 4.35, so 100 times that value is just a little less than 435.

You can deal with roundoff errors by rounding to the nearest integer or by displaying a
fixed number of digits after the decimal separator (see Section 2.5.3).

Unbalanced Parentheses

Consider the expression

((a + b) * t I 2 * (1 - t)

What is wrong with it? Count the parentheses. There are three (and two). The parenthe­
ses are unbalanced. This kind of typing error is very common with complicated expressions.
Now consider this expression.

(a + b) * t) I (2 * (1 - t)

This expression has three (and three), but it still is not correct. In the middle of the
expressiOn,

(a + b) * t) I (2 * (1 - t)

t
there is only one (but two), which is an error. At any point in
an expression, the count of (must be greater than or equal to the
count of), and at the end of the expression the two counts must be
the same.

Here is a simple trick to make the counting easier without using
pencil and paper. It is difficult for the brain to keep two counts

44 Chapter 2 Programming with Numbers and Strings

't' ,

·, Program~ing Tip 2.3 .

®
I I

ld::l

simultaneously. Keep only one count when scanning the expression. Start with 1 at the first
opening parenthesis, add I whenever you see an opening parenthesis, and subtract one when­
ever you see a closing parenthesis. Say the numbers aloud as you scan the expression. If the
count ever drops below zero, or is not zero at the end, the parentheses arc unbalanced. For
example, when scanning the previous expression, you would mutter

(a + b) * t) I (2 * (1 - t)
1 0 -1

and you would find the error.

Use Spaces in Expressions

It is easier to read

xl; (-b + sqrt(b ** 2 - 4 * a * c)) I (2 * a)
than

xl;(-b+sqrt(b**2-4*a*c))/(2*a)

Simply put spaces around all operators (+ - * I % •, and so on). However, don't put a space
after a unary minus: a- used to negate a single quantity, such as -b. That way, it can be easily
distinguished from a binary minus, as in a - b.

It is customary not to put a space after a function name. That is, write sqrt(x) and not
sqrt (x).

Other Ways to Import Modules

Python provides several different ways to import functions from a module into your program.
You can import multiple functions from the same module like this:

from math import sqrt, sin, cos

You can also import the entire contents of a module into your program:

from math import *

Alternatively, you can import the module with the statement

import math

With this form of the i mport statement, you need to add the module name and a period before
each function call, like this:

y ; math.sqrt(x)

Some programmers prefer this style because it makes it very explicit to which module a par­
ticular function belongs.

Combining Assignment and Arithmetic

In Python, you can combine arithmetic and assignment. For example, the instruction

total +; cans
is a shortcut for

total ; total + cans
Similarly,

total *= 2

is another way of writing

total ~ total * 2

2.3 Problem Solving: First Do It By Hand 45

Many programmers find this a convenient shortcut especially when incrementing or decre­
menting by 1:

count ~ 1

If you like it, go ahead and use it in your own code. For simplicity, we won't use it in this book.

Line joining

If you have an expression that is too long to fit on a single line, you can continue it on another
line provided the line break occurs inside parentheses. For example,

xl • ((-b + sqrt(b ** 2 - 4 * a * c))
I (2 * a)) II Ok

However, if you omit the outermost parentheses, you get an error:

xl • (-b + sqrt(b ** 2 - 4 * a * c))
I (2 * a) I Error

The first line is a complete statement, which the Python interpreter processes. The next line,
I (2 * a), makes no sense by itself.

There is a second form of joining long lines. If the last character of a line is a backs lash, the
line is joined with the one following it:

xl • (-b + sqrt(b ** 2 - 4 * a * c)) \
I (2 * a) II Ok

You must be very careful not to put any spaces or tabs after the backslash. In this book, we
only use the first form of line joining.

Problem Solving:_ first DoJt By Hand
In the preceding section, you learned how to express computations in Python. When
you are asked to write a program for solving a problem, you may naturally think
about the Python syntax for the computations. However, before you start program­
ming, you should first take a very important step: carry out the computations by
hand. If you can't compute a solution yourself, it's unlikely that you'll be able to
write a program that automates the computation.

To illustrate the use of hand calculations, consider the following problem: A row
of black and white tiles needs to be placed along a wall. For aesthetic reasons, the
architect has specified that the first and last tile shall be black.

Your task is to compute the number of tiles needed and the gap at each end, given
the space available and the width of each tile.

tap

