
OGRAMMING
T H NUMBERS
D STRINGS

~f 1e and use variables and constants

"(:erstand the properties and limitations of integers and floating-point numbers

:~reciate the importance of comments and good code layout

te arithmetic expressions and assignment statements

~a~e programs that read and process inputs, and display the results

.:art" how to use Python strings

~ate simple graphics programs using basic shapes and text

'\ARIABLES 30

2.1: Assignment 31
...::.="T'.:>r Error 2.1: Using Undefined Variables 36

.;'Timing Tip 2.1: Choose Descriptive
:.::>le Names 36

.;..,-ming Tip 2.2: Do Not Use
~ ic Numbers 37

AR ITHMETIC 3 7
· Z 2: Calling Functions 40
x Error 2.2: Roundoff Errors 43

Error 2.3: Unbalanced Parentheses 43
~mming Tip 2.3: Use Spaces in
;~essions 44

-opic 2.1: Other Ways to Import
- ~ es 44

-· -opic 2.2: Combining Assignment
!..nthmetic 44
-op1c 2.3: Line joining 45

PROBLEM SOLVING: FIRST
00 TT BY HAND 45

Worked Example 2.1: Computing Travel Time 47

2.4 STRINGS 48

Special Topic 2.4: Character Values 53
Special Topic 2.5: Escape Sequences 54
Computing & Society 2.1: International

Alphabets and Unicode 54

2.5 INPUT AND OUTPUT 55
Syntax 2.3: String Format Operator 57
Programming Tip 2.4: Don't Wait to

Convert 60
How To 2.1: Writing Simple Programs 60
Worked Example 2.2: Computing the Cost

ofStamps 63
Computing & Society 2.2: The Pentium

Floating-Point Bug 65

2.6 GRAPHICS: SIMPLE DRAWINGS 65

How To 2.2: Drawing Graphical Shapes 72

Numbers and character strings (such as the ones on this
display board) are important data types in any Python
program. In this chapter, you will learn how to work with
numbers and text, and how to write simple programs that
perform useful tasks with them.

2. 1 Variables

A variable is a
storage location
with a name.

30

When your program carries out computations, you will want to store values so that
you can use them later. In a Python program, you use variables to store values. In this
section, you will learn how to define and usc variables.

To illustrate the use of variables, we
will develop a program that solves the
following problem. Soft drinks are sold
in cans and bottles. A store offers a six
pack of 12-ounce cans for the same price
as a two-liter bottle. Which should you
buy? (Twelve fluid ounces equal approx
imately 0.355liters.)

In our program, we will define vari
ables for the number of cans per pack
and for the volume of each can. Then we
will compute the volume of a six-pack in What contains more soda? A six·pack of
liters and print out the answer. 12·ounce cans or a two·liter bottle?

2. 1 .1 Defining Variables

A variable is a storage location in a computer program. Each variable has a name and
holds a value.

A variable is similar to a parking space in a parking garage. The parking space has
an identifier (such as "J 053"), and it can hold a vehicle. A variable has a name (such as
cansPerPack), and it can hold a value (such as 6).

Like a variable in a computer
program, a parking space has
an identifier and a contents.

2. l Variables 3 1

ax 2. 1 Assignment

Syntax variableName ~ value

A variable Is deftMd
the first 111M It

Is asslg~~ed a value.

total = 0 Na!Mes of previously /1 defitted variables

total ~ bottles * BOTTLE_VOLUME

fhe expressiott that replaces the previous value

total ~ total + cans * CAN_VOLUME

fhe Iaiiie MIM ~
cat1 oeeur ott both tides.) Na~ttes of previously

Su Figure t.. · defltted variables

You usc the assignment statement to place a value into a variable. Here is an
example

cansPerPack = 6 ~ ~
The left-hand side of an assignment statement consists of a variable. The right-hand
side is an expression that has a value. That value is stored in the variable.

The first time a variable is assigned a value, the variable is created and initialized
with that value. After a variable has been defined, it can be used in other statements.
For example,

print(cansPerPack)

will print the value stored in the variable cansPerPack.
If an existing variable is assigned a new value, that value replaces the previous con

tents of the variable. For example,

cansPerPack = 8 ~

changes the value contained in variable cansPerPack from 6 to 8. Figure 1 illustrates the
two assignment statements used above.

The = sign does not mean that the left-hand side is equal to the right-hand side.
Instead, the value on the right-hand side is placed into the variable on the left.

Do not confuse this assignment operator with the = used in algebra to denote
equality. Assignment is an instruction to do something-namely, place a value into a
variable.

is the first assignment,
e is created.

0 The variable is initialized. 0 The second assignment overwrites
the stored value.

;,:rPack = cansPerPack = 6 cansPerPack • 8

Figure 1 Executing Two Assignments

32 Chapter 2 Programming with Numbers and Strings

The data type of a
value specifies how
the value is stored
in the comptuer and
what operations
can be performed on
the value.

Integers are whole
numbers without a
fractional part.

Floating-point
numbers contain a
fractional part.

Figure 2
Executing the Assignment
cansPerPack = cansPerPack + 2

0 Compute the value of the right-hand side

cansPerPack ;

cansPerPack + 2

~
10

G Store the value in the variable J
cansPerPack = 10

......._

For example, in Python, it is perfectly legal to write

cansPerPack = cansPerPack + 2

The second statement means to look up the value stored in the variable cansPerPack,

add 2 to it, and place the result back into cansPerPack. (See Figure 2.) The net effect of
executing this statement is to increment cansPerPack by 2. If cansPerPack was 8 before
execution of the statement, it is set to 10 afterwards. Of course, in mathematics it
would make no sense to write that x = x + 2. No value can equal itself plus 2.

2.1.2 Number Types

Computers manipulate data values that represent information and these values can
be of different types. In fact, each value in a Python program is of a specific type. The
data type of a value determines how the data is represented in the computer and what
operations can be performed on that data. A data type provided by the language itself
is called a primitive data type. Python supports quite a few data types: numbers, text
strings, files, containers, and many others. Programmers can also define their own
user-defined data types, which we will cover in detail in Chapter 9.

In Python, there are several different types of numbers. An integer value is a whole
number without a fractional part. For example, there must be an integer number of
cans in any pack of cans-you cannot have a fraction of a can. In Python, this type
is called int. When a fractional part is required (such as in the number 0.355), we use
floating-point numbers, which are called float in Python.

When a value such as 6 or 0.355 occurs in a Python program, it is called a number
literal. If a number literal has a decimal point, it is a floating-point number; other
wise, it is an integer. Table 1 shows how to write integer and floating-point literals in
Python.

A variable in Python can store a value of any type. The data type is associated with
the value, not the variable. For example, consider this variable that is initialized with
a value of type int:

taxRate = S

The same variable can later hold a value of type float:

tax Rate = S. 5

~ .
Number

6

-6

0

Table 1 Number Literals in Python

Type

int

int

int

Comment

An integer has no fractional part.

Integers can be negative.

Zero is an integer.

2 . 1 Varia b les 33

o.s

1.0

float

float

A number with a fractional part has type float.

An integer with a fractional part .0 has type float.

1E6

2.96E-2

(S) 100,000

(S) 3 1/2

float

float

A number in exponential notation: 1 x 106 or 1000000.
Numbers in exponential notation always have type float.

Negative exponent: 2.96 x 10-2 = 2.96 I 100 = 0.0296

Error: Do not use a comma as a decimal separator.

Error: Do not use fractions; usc decimal notation: 3.5.

It could even hold a string:

taxRate • "Non-taxable" II Not recommended

However, that is not a good idea. If you use the variable and it contains a value of an
unexpected type, an error will occur in your program. Instead, once you have initial
ized a variable with a value of a particular type, you should take care that you keep
storing values of the same type in that variable.

For example, because tax rates are not necessarily integers, it is a good idea to ini
tialize the taxRate variable with a floating-point value, even if it happens to be a whole
number:

taxRate • 5. 0 # Tax rates can have fractional parts

This helps you remember that tax Rate can contain a floating-point value, even though
the initial value has no fractional part.

2. l . 3 Variable Names

When you define a variable, you need to give it a name that explains its purpose.
Whenever you name something in Python, you must follow a few simple rules:

1 Names must start with a letter or the underscore(_) character, and the remain
ing characters must be letters, numbers, or underscores.

2. You cannot use other symbols such as ? or%. Spaces
are not permitted inside names either. You can use
uppercase letters to denote word boundaries, as in
cansPerPack. This naming convention is called camel
case because the uppercase letters in the middle of
the name look like the humps of a camel.

34 Chapter 2 Programming with Numbers and Strings

Variable Name

canVo1umel

X

_6 CanVo 1 ume

(S) 6pack

(S) can vo 1 ume

(S) class

(S) ltr/fl.oz

By convention,
variable names
should start with a
lowercase letter.

Use constants for
values that should
remain unchanged
throughout your
program.

Table 2 Variable Names in Python

Comment

Variable names consist of letters, numbers, and the underscore character.

In mathematics, you use short variable names such as x or y. This is legal in Python, but
not very common, because it can make programs harder to understand (see Programming
Tip 2.1 on page 36).

Caution: Variable names are case sensitive. This variable name is different from canVo 1 ume,
and it violates the convention that variable names should start with a lowercase letter.

Error: Variable names cannot start with a number.

Error: Variable names cannot contain spaces.

Error: You cannot use a reserved word as a variable name.

Error: You cannot use symbols such as I or.

3. Names are case sensitive, that is, canvo 1 ume and canvo 1 ume are different names.

4 . You cannot use reserved wor ds such as if or c 1 ass as names; these words are
reserved exclusively for their special Python meanings. (See Appendix C for a
listing of all reserved words in Python.)

These are firm rules of the Python language. There are two "rules of good taste" that
you should also respect.

1 . It is better to use a descriptive name, such as cansPerPack, than a terse name, such
as cpp.

2. Most Python programmers use names for variables that start with a lowercase
letter (such as cansPerPack). In contrast, names that are all uppercase (such as
CAN_ VOLUME) indicate constants. Names that start with an uppercase letter are
commonly used for user-defined data ty pes (such as GraphicsWindow).

Table 2 shows examples of legal and illegal variable names in Python.

2. 1 .4 Constants

A constant variable, or simply a constan t, is a variable whose value should not be
changed after it has been assigned an initial value. Some languages provide an explicit
mechanism for marking a variable as a constant and will generate a syntax error if you
attempt to assign a new value to the variable. Python leaves it to the programmer to
make sure that constants are not changed. Thus, it is common practice to specify a
constant variable with the use of all capital letters for its name.

BOTTLE_VOLUME = 2.0
MAX_SIZE = 100

By following this convention, you provide information to yourself and others that
you intend for a variable in all capital letters to be constant throughout the program.

It is good programming style to use named constants in your program to explain
numeric values.

For example, compare the statements

totalVolume = bottles * 2

and

totalVolume • bottles * BOTTLE_VOLUME

2.1 Variab les 35

A programmer reading the first statement may not understand the significance of
the number 2. The second statement, with a named constant, makes the computation
much clearer.

2.1 . 5 Comments

As your programs get more complex, you should
add comments, explanations for human readers
of your code. For example, here is a comment that
explains the value used in a constant:

CAN_ VOLUME • 0. 355 # Liters in a 12-ounce can

This comment explains the significance of the value
0.355 to a human reader. The interpreter does not
execute comments at all.lt ignores everything from a
#delimiter to the end of the line.

It is a good practice to provide comments. This
helps programmers who read your code understand
your intent. In addition, you will find comments
helpful when you review your own programs. Pro
vide a comment at the top of your source file that
explains the purpose of the program. In the text
book, we use the following style for these comments,

just as a television commenta·
tor explains the news, you use
comments in your program to
explain its behavior.

This program computes the volume (in liters) of a six-pack of soda cans.
If

Now that you have learned about variables, constants, the assignment statement, and
comments, we are ready to write a program that solves the problem from the begin
ning of chapter. The program displays the volume of a six-pack of cans and the total
volume of the six-pack and a two-liter bottle. We use constants for the can and bottle
volumes. The totalVolume variable is initialized with the volume of the cans. Using an
assignment statement, we add the bottle volume. As you can see from the program
output, the six-pack of cans contains over two liters of soda.

ch02/ volume l.py

1 fltl
2 I This program computes the volume {in liters) of a six-pack of lioda
3 I cans and the total volume of a six-pack and a two-liter boule.
4 I

5 -- -·
1 6 I Liters in a 12-ounce can and a two-liter bottle.

7 CAN_VOLUME .. .355
8 BOTTLE_VOLUME .. 2.0
9

1 0 I Number of cans per pack.
, 11 cansPerPack ~ 6

36 Chapter 2 Programming with Numbers and Strings

12
1 3 # Calculate total volume in the Lans.
14 totalVolume = cansPerPack * CAN_VOLUME
15 print (" s -o c 1 .. ,. a1n• , totalVolume, liters)
16
17 # Calculate total volume in the cans and a 2 liter bottle.
18 totalVolume = totalVolume + BOTTLE_VOLUME
19 print ("\ si ac a'ld l l ontaln , totalVolume, liters)

Program Run

A six-pack of 12-ounce cans contains 2.13 liters.
A six-pack and a two-liter bottle contain 4.13 liters.

1. Define a variable suitable for holding the number of bottles in a case.

2. What is wrong with the following statement?

ounces per liter= 28.35

3. Define two variables, uni tPri ce and quantity, to contain the unit price of a single
bottle and the number of bottles purchased. Use reasonable initial values.

4. Use the variables declared in Self Check 3 to display the total purchase price.

s. Some drinks are sold in four-packs instead of six-packs. How would you change
the volumel.py program to compute the total volume?

6. Why can't the variable totalVolume in the volumel.py program be a constant
variable?

7. How would you explain assignment using the parking space analogy?

Practice It Now you can try these exercises at the end of the chapter: R2.1, R2.2, P2.1.

Using Undefined Variables

A variable must be created and initialized before it can be used for the first time. For example,
the following sequence of statements would not be legal:

canVolume = 12 * literPerOunce # Error: literPerOunce has not yet been created.
literPerOunce = 0.0296

In your program, the statements are executed in order. When the first statement is executed by
the virtual machine, it does not know that literPerOunce will be created in the next line, and it
reports an "undefined name" error. The remedy is to reorder the statements so that each vari
able is created and initialized before it is used.

Choose Descriptive Variable Names

We could have saved ourselves a lot of typing by using shorter variable names, as in

cv = 0.355

Compare this declaration with the one that we actually used, though. Which one is easier to
read? There is no comparison. Just reading canVolume is a lot less trouble than reading cv and
then figuring out it must mean "can volume".

2.2 Arithmetic 37

This is particularly important when programs are written by more than one person. It may
be obvious to you that cv stands for can volume and not current velocity, but will it be obvious
to the person who needs to update your code years later? For that matter, will you remember
yourself what cv means when you look at the code three months from now?

Do Not Use Magic Numbers

A magic number is a numeric constant that appears in your code without explanation. For
example,

totalVolume • bottles * 2

Why 2? Are bottles twice as voluminous as cans? No, the reason
is that every bottle contains 2 liters. Use a named constant to
make the code self-documenting:

BOTTLE_VOLUME • 2.0
totalVolume = bottles * BOTTLE_VOLUME

There is another reason for using named constants. Suppose
circumstances change, and the bottle volume is now 1.5 liters.
If you used a named constant, you make a single change, and
you are done. Otherwise, you have to look at every value of 2 in
your program and ponder whether it meant a bottle volume or

We prefer programs that
are easy to understand
overthosethatappear
to work by magic.

something else. In a program that is more than a few pages long, that is incredibly tedious and
error-prone.

Even the most reasonable cosmic constant is going to change one day. You think there are
365 days per year? Your customers on Mars are going to be pretty unhappy about your silly
prejudice. Make a constant

DAYS_PER YEAR • 365

Arithmetic
In the following sections, you will learn how to carry out arithmetic calculations
in Python.

2.2 .l Basic Arithmetic Operations

Python supports the same four basic arithmetic operations as a calculator-addition,
subtraction, multiplication, and division-but it uses different symbols for multipli
cation and division.

You must write a * b to denote multiplication. Unlike in mathematics, you cannot
write a b, a · b, or a x b. Similarly, division is always indicated with a 1, never a+ or a
fraction bar.

a+b
For example, -

2
- becomes (a + b) I 2.

The symbols + - * 1 for the arithmetic operations are called operators. The com
bination of variables, literals, operators, and parentheses is called an expression . For
example, (a + b) I 2 is an expression.

