
Page 1 of 7

CSSE 120 – Introduction to Software Development

Exam 1: Format and
What you should be able to do

Table of Contents
Format of the exam .. 1

Essentials (If you can't do these, you probably will not pass the exam!) 2

What You Should Be Able to Do on the Exam 3
Summary of: ... 3

For the Paper-and-Pencil portion, you should be able to 3
For the On-the-Computer portion, you should be able to 3
Concepts you might see on code you read and write 3

Elaboration of: ... 4
For the Paper-and-Pencil portion, you should be able to 4
For the On-the-Computer portion, you should be able to 5
Concepts you might see on code you read and write 7

Format of the exam

Honesty Pledge:

At the beginning of the exam, you will receive an Honesty Pledge
which you should have read before the exam – it is available from
the above link, or visit the CSSE 120 web site, under Resources,
then Materials to help you prepare for CSSE 120 exams. You will
sign and turn in that pledge at the end of the exam.

Two parts:

• Part 1: Paper-and-Pencil.

For this part, the ONLY external resource you may use is a
single 8½ by 11 sheet of paper, with whatever you want on
it, typed or handwritten or a combination of the two. You
may use BOTH sides of the sheet. You must have prepared
the sheet before beginning the exam.

o It is best if you create your own sheet (working with
someone else is fine) as that will probably maximize both
your learning and your score on the exam.

• Part 2: On-the-computer.

For this part, the only external resources allowed are:

o Any written material you choose to bring to the exam:
books, handouts, notes, etc.

o Your computer and anything on it.

o Your own SVN repository

o Anything directly reachable from the CSSE 120 web site.

You may not use any search engine (like Google).
(Exception: If a search engine is embedded into a site directly
reachable from the CSSE 120 web site, and is restricted to
that site, then you may use that limited search engine.)

Communication:

For both parts of the exam, you must not communicate with
anyone except your instructor and his delegates, if any.

Time limit:

You have two hours to complete the entire exam – its paper part
and its computer part. You will receive both parts at the
beginning of the exam. You must complete the paper part (using
only your prepared 1-page-front-and-back sheet) and turn it in
before you begin work on the computer part.

http://www.rose-hulman.edu/class/csse/csse120/201430/Resources/ExamPreparation/Exam1_HonestyPledge.pdf

Page 2 of 7

Essentials
(if you can’t do these, you probably will not pass the exam!)

Be SURE you can:

1. Implement and test a function, per its specification

2. Solve input-compute-output problems.

3. Use parameters and return values.

4. In zellegraphics: Construct a window. Construct and draw
objects (circles, rectangles, etc) on it. Have the window wait
for a mouse click before closing.

5. Succeed in simple summing and counting problems.

6. Know what to do when a compile-time error occurs, and
when a run-time error occurs.

Read the green specification.

Do NOT change the number, order or meaning of the parameters, nor
the function name.

If the specification says to return something, then return it and do
NOT print it (in the function).

Test the function in a testing function, by calling the function with
appropriate parameters. Provide as many tests (calls) as the problem
requires. It is OK (and normal) to print in the testing function.

Example: Session 2, m2_input_compute_output

Example: digits_in_power function in Session 4,
m4 calling functions returning values

Example: Session 3, m2_using_objects

Example: Session 6, m2_summing_and_counting

Page 3 of 7

What you should be able to do – Summary

This is not a contract; it is only our best-effort to list everything
you might be expected to demonstrate on this exam.

See the pages that follow for an elaboration of this summary.

For the Paper-and-Pencil portion of Exam 1, students
should be able to:
1. Read short snippets of code.

2. Write short snippets of code.

3. Explain important concepts of software development, chosen
from a short list (below)

For the On-the-Computer portion of Exam 1,
students should be able to:
7. Write short programs and/or functions that are examples of

the input-compute-output pattern.

8. Call (invoke) functions and methods.

9. Implement and test functions that have parameters and
(possibly) return values, per the function’s specification.

10. Use objects: construct instances, use methods, reference
fields, and apply all this to zellegraphics.

11. Use counted loops, that is, for ... in range(...)
statements, especially as applied via the Accumulator
Pattern (summing, counting, in graphics, etc).

12. Use conditional statements, with relational operators
and Boolean operators.

13. Debug, test, and submit your code.

14. Apply the Concepts below as needed to accomplish the
above.

Concepts that you might see on code that you read and
write include:

1. Variables and assignment

2. Data types: int float string bool

The type function to tell the type of an object.

3. Arithmetic operators and expressions and functions from the
math module.

4. The input and print functions.

5. Functions and methods, including calling (invoking) and
defining them; parameters and arguments; returned values;
and functions that call functions.

6. Counted loops, i.e., loops through a range expression

7. Objects, including constructors, methods and fields.

8. Conditionals, relational operators and Boolean operators.

9. The flow of execution: sequential, and per function calls and
returns, conditional statements and loops. The roles of main
and import statements.

10. The scope of variables, per namespaces.

11. zellegraphics as an example of using objects and as a rich
place in which to apply all the above.

Page 4 of 7

What you should be able to do – Elaboration

See Page 3 for a summary of this elaboration.

For the Paper-and-Pencil portion of Exam 1, students
should be able to:

1. Read short snippets of code.

a. Trace short snippets of code (less than, say, 10 lines or so)
and show what gets printed or the values of indicated
variables/expressions. Especially:

• Following the sequence of execution through:

o Function calls (including functions that call
functions)

o FOR loops

o Conditionals

• Sending arguments to functions and capturing
returned values (noticing the scope of variables).

• The effect of accumulator statements like x = x + 1.

b. Indicate errors in short snippets of code:

• Syntax errors: something wrong or missing in notation

• Semantic errors: does such-and-such, should do so-
and-so

2. Write short snippets of code, especially:

a. range expressions for common ranges

b. Counted loops (that is, for ... in range(...)) that
generate/print simple sequences

c. Function definitions, including those that have parameters
and/or return values

d. Function calls, including follow-up code that uses a
returned value

e. Conditionals with relational and Boolean operators

3. Explain important concepts of software development,
chosen from:

a. The difference between syntax and semantic errors.

b. The difference between a specification and an
implementation, and what a specification of a function
should include.

c. Why functions are useful and important

d. Documentation: how and why we put internal comments
and documentation strings in our programs.

e. Software development tools: what is provided by a
typical, modern:

• Integrated Development
Environment (IDE)

• Version control system

• Debugger

f. Key ideas of object-oriented programming, in particular:

• What makes objects different from traditional data
types? Answer: objects know stuff (stored in fields)
and can do stuff (via methods)

• The difference between a function and a method, and
the different notations for invoking them

• The difference between an object and a class to which
that objects belongs

g. The difference between the int and float data types.
The limitations of each; which you should choose when.

h. What pair programming is, and why it is useful

While you might see some problems
of type #3, don’t expect a lot of such
questions and don’t expect them to
be deep. A simple understanding of
these concepts is adequate.

See later in this document for a list
of concepts that you might see on
code you read and code you write.

Page 5 of 7

For the On-the-Computer portion of Exam 1,
students should be able to:
1. Write short programs and/or functions that are examples of

the input-compute-output pattern. Be able to:

a. Use input to get input from the console, including:

• Provide a prompt

• Convert an input string into a number (integer or
floating-point) using int and float

b. Use variables to store the input and perform numeric
computations using:

• Operators: + - * / // % **

• Functions and constants from the builtins and math
modules, including:
 cos sin sqrt pi abs round
and others that you should be able to look up with the
“dot trick”

c. Use print to display results on the console, with or
without appropriate strings that explain the results

2. Call (invoke) functions and methods

a. Whether built-in, defined in the current module, or from
an imported module.

b. Use the returned value (if any), perhaps by capturing it in
a variable.

3. Implement and test functions that have parameters and
(possibly) return values, per the function’s specification.

Be able to:

a. Write the def portion of a function definition, given (in
ordinary English) the name of the function and a
description of its parameters.

b. Implement the function body, using the parameters and
other local variables as needed, per the function’s
specification. Display an understanding of:

• A parameter is a name for a value that comes into the
function from the caller.

• The function can return a value to the caller with a
return statement.

• Scope and namespaces: parameters and other local
variables have no direct relationship to variables with
the same names in other functions.

• Coding to a specification:
• You may NOT change the number, order or meaning

of the parameters, nor the function name.
• Your implementation must meet the specification of

its documentation string (displayed in green
between the function header and body).

• In particular, the function must return a value if
called for by the specification and must not print
anything unless the specification says to do so.

c. Test the function in a testing function, by calling the
function with appropriate parameters.

• If the tested function returns a value, print the
returned value and compare it to the expected
(correct) value for that test case.

• Each such function call forms one test case. You
should be able to use test cases that we supply as well
as develop reasonable test cases on your own.

4. Use objects: construct instances, use methods, reference
fields, and apply all this to zellegraphics.

a. Construct an object that is an instance of a class

b. Apply methods to the object

Page 6 of 7

c. Reference fields (aka instance variables) of the object (but
note: usually we use accessor methods instead of directly
accessing the object’s fields)

d. Determine what methods apply to an object and what
fields it has, by using the “dot trick”

e. Use the pop-up information that the “dot trick” displays
to make reasonable guesses for what arguments are
needed in constructing an object or applying a method.

• Be able to use the dot trick even when the variable of
interest is a parameter (and hence its type is not
known to the dot trick).

• Be aware of the special role of the __init__ method
for constructors and how to use it.

f. Understand the distinction between an object and a class
that it is an instance of.

5. Use counted loops, that is, for ... in range(...)
statements, especially as applied via the Accumulator
Pattern (summing, counting, in graphics, etc).

a. Use a range statement, in any of its three forms:

 range(n) range(m, n) range(m, n, d)

b. Use the loop variable as called for by the problem.

c. Use the Accumulator Pattern in forms that include:

 • summing • counting • averaging

 • products (including factorial) • in graphical patterns

6. Use conditional statements, with relational operators and
Boolean operators.

a. Conditionals: if if-else if-elif-...-else
Know when to use which of the above.

b. Use relational operators: > < >= <= !=
and especially carefully ==

c. Use Boolean operators: and or not

7. Debug, test, and submit your code.

a. Use Eclipse to correct syntax
errors like this example:

b. Use the red error messages in the Console window and
the associated blue links to know the line at which the
program broke and the general nature (at least) of the
error

c. Use the Debugger to track down harder-to-diagnose run-
time errors

d. Test your code: Supply calls (typically in testing functions)
that call your functions with parameters that help test
them, printing returned values as appropriate.

e. Submit your code, using SVN Commit as usual.

8. Apply the above to zellegraphics:

a. Construct (and hence display) a GraphWin, and use
closeOnMouseClick and/or getMouse to keep the
window from disappearing prematurely.

b. Construct and use a Point, Line, Circle, Rectangle,
Oval, Polygon, Text, Image, Entry, or even (using the
“dot trick”) something similar that we add to zellegraphics
just for the exam.

c. Apply methods to the above, including but not limited to
(not all of these apply to all of the above!):

 draw undraw move closeOnMouseClick getMouse

getters like: getX getY getP1 getP2
 getFill getWidth getCenter getRadius

setters like: setFill setOutline

d. Do an animation (using time.sleep and move)

Page 7 of 7

9. Apply the Concepts below as needed to accomplish the
above.

Concepts that you might see on code that you read and
write include:

1. Variables and assignment

2. Data types: int float string bool

The type function to tell the type of an object.

3. Arithmetic operators and expressions and functions from the
math module, including:

a. Operators: + - * / // % **

b. math functions/objects: abs cos sin pi sqrt

c. builtins functions: min max round

4. The input and print functions.

a. Providing a prompt for input

b. Converting an input string into a number (integer or
floating-point) using int and float

c. Printing string literals and values of variables together in
sensible ways

5. Functions and methods, including:

a. Function definitions, including parameters

b. Function and method calls (aka invoking them), including
those with actual arguments

c. Returning a value from a function and capturing/using
returned values

d. Functions that call functions

6. Counted loops, i.e., loops through a range expression in any
of its three forms:

 range(n) range(m, n) range(m, n, d)

7. Objects, including statements that:

a. Construct an object

b. Apply a method to an object

c. Reference a field (aka instance variable) of an object

8. Conditionals, relational operators and Boolean operators:

 if if-else if-elif-...-else

 > < >= <= != ==

 and or not

9. The flow of execution: sequential, and per function calls and
returns, conditional statements and loops. The roles of main
and import statements.

10. The scope of variables, per namespaces.

11. zellegraphics as an example of using objects and as a rich
place in which to apply all the above.

Sections of the textbook that you read, all of which are relevant
to the above:

• Chapter 2, sections 2.1 through 2.5

• Chapter 3, sections 3.1 through 3.7

• Chapter 5: sections 5.1 through 5.5, and 5.8

