
UML 2: A model-driven
development tool

&

B. Selic

The Unified Modeling Languaget (UMLt) industry standard has recently undergone a

major upgrade, resulting in a revision called UML 2. The primary motivation for this

revision was to make UML better suited to model-driven developmente (MDDe), an

approach to software development in which software models play a vital role. This

requires a modeling language that is not only highly expressive but also capable of

specifying models that are precise and unambiguous. In this overview article, we

describe the key developments in UML 2 and the rationale behind them, and we

explain how they help meet the needs of MDD. These new capabilities can be grouped

into two distinct categories: (1) internal and architectural changes required to support

MDD and (2) new modeling features. This paper is a revised version of a Web article,

‘‘Unified Modeling Language Version 2.0,’’ which was published on March 21, 2005,

by developerWorkst, IBM Corporation.

INTRODUCTION

The early part of the 1990s saw heightened interest

in the object paradigm and related technologies.

New programming languages based on this para-

digm, such as Smalltalk, Eiffel, Cþþ, and Java**,

were defined and widely used. These were then

accompanied by a prodigious and confusing glut of

object-oriented software design methods and mod-

eling notations. For example, in his very thorough

overview of object-oriented (OO) analysis and

design methods (covering over 800 pages), Ian

Graham lists over 50 seminal OO methods.
1

Given

that the object paradigm consists of a relatively

compact set of core concepts, such as encapsulation,

inheritance, and polymorphism, there was clearly a

great deal of overlap and conceptual alignment

across these methods, much of it obscured by

notational and other differences of little or no

consequence. This caused much confusion and

needless fragmentation, which, in turn, impeded

adoption of this extremely useful paradigm. Devel-

opers were forced to make difficult and binding

choices between mutually incompatible languages,

tools, methods, and vendors. The fragmentation

also made it very difficult to find experts who were

sufficiently fluent in the language chosen, leading to

additional training costs.

For this reason, when the Unified Modeling Lan-

guage** (UML**) initiative was announced by

�Copyright 2006 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/06/$5.00 � 2006 IBM

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006 SELIC 607

Rational* Software, the reaction by the software

development community was overwhelmingly pos-

itive. UML started as an amalgamation of the two

most popular OO methods of the time: the OMT

method of Rumbaugh et al.
2

and the Booch

method.
3

The primary authors of these two meth-

ods, Jim Rumbaugh and Grady Booch, were later

joined by Ivar Jacobson, whose OOSE method was

noted for its seminal contribution to requirements-

driven software construction processes, based on

the now familiar notion of use cases.
4

Following this

initial effort, which provided a homogenous con-

ceptual and notational framework, a number of

leading methodologists and thought leaders were

invited to critique and to contribute to UML.

Particularly notable was the contribution of David

Harel, whose statechart formalism
5

was adapted and

then adopted as one of the core elements of the

language.

The intent behind UML was not invention but

consolidation. The result was a synergistic blending

of the best features of the various OO languages,

methods, and notations into a single vendor-

independent modeling language and notation. This

open quality is one of the main reasons why UML

very quickly became a de facto standard and,

following its adoption by the Object Management

Group (OMG**) in 1996, a bona fide industry

standard.
6–8

Since then, UML has been widely adopted and is

supported by the majority of major modeling tool

vendors. It has also been incorporated as an

essential part of the computer science and engi-

neering curricula in universities throughout the

world and in various professional training pro-

grams. Last but not least, it is being used extensively

by academic and research communities as a

convenient lingua franca and is itself the subject of

significant research.

UML has also helped raise general awareness of the

value of software modeling as a means for coping

with the complexity of modern software. Although

this highly useful technique is almost as old as

software itself (flowcharts and finite state machines

are early examples of software modeling), the

majority of practitioners have generally been slow in

accepting it as anything more than a minor power

assist. Because this is still the dominant attitude,

model-based development methods are encounter-

ing a great deal of resistance.

Even though some of this can be ascribed to an

irrational fear of change, there are some valid

reasons why practitioners doubt the value of

models. Probably the most important is that

experience has shown that software models are

often wildly inaccurate, sometimes obscuring fatal

design flaws behind fancy but ambiguous graphics.

Clearly, the practical value of any model increases

with its accuracy. If a model cannot be trusted to tell

us what we need to know about the software system

that it represents, then it can be even worse than

useless because it can lead to the wrong conclu-

sions. The key, then, to increasing the value of

software models is to narrow the semantic gap

between them and the systems they are modeling.

However, as we shall explain later, it turns out that

this is far easier to do with software than with any

other engineering medium.

Much of the inaccuracy of software models is due to

the extremely detailed and sensitive nature of

current programming languages. Minor lapses and

barely detectable coding errors, such as misaligned

pointers or uninitialized variables, can have enor-

mous but generally unpredictable consequences. For

instance, there is a well-documented case where a

single missing ‘break’ statement in a C program

resulted in the loss of long-distance telephone

service for a large part of the United States. The

economic damage this caused was estimated to be in

the hundreds of millions of dollars.
9

This ‘‘chaotic’’

nature of modern software technologies, where a

seemingly minute defect can have major effects on

the overall system, makes it very difficult to model

software systems accurately. After all, the essence of

modeling lies in abstraction or the removal of

unessential detail. Because it is difficult to predict

which fragment of software is unessential, how is it

possible to have a model of software that is accurate

and yet abstract enough to be useful?

One very effective solution to this dilemma is to

formally link a model with its corresponding

software implementation through one or a series of

automated model transformations. Perhaps the best

and most successful exemplar of that approach is

the compiler, which automatically translates a high-

level language program into an equivalent machine

language implementation. In this case, the ‘‘model’’

SELIC IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006608

is the high-level language program, which, like all

useful models, hides irrelevant detail such as the

idiosyncrasies of the underlying computing tech-

nology (e.g., internal word size, word orientation,

the number of accumulators and index registers, the

details of arithmetic and logic unit (ALU) program-

ming).

Few if any engineering media other than software

can provide such a tight coupling between a model

and its corresponding engineering artifact. A model

of any kind of physical artifact (automobile, build-

ing, bridge, etc.) inevitably involves an informal

step of abstracting the physical characteristics into a

corresponding formal model, such as a mathemat-

ical model or a scaled-down physical model.

Similarly, implementing an abstract model with

physical materials involves an informal transfor-

mation from the abstract into the concrete. The

informal nature of this step can lead to inaccuracies

that, as noted above, can render the models

ineffective or even counterproductive. When it

comes to software, however, the elements that are

being modeled typically come from the world of

ideas and are generally unfettered by intricate

physical detail or constraints. By judicious selection

of software abstractions and through the precise

definition of their semantics, the transition from an

abstraction to its software realization (and vice

versa) can be automated without loss of accuracy. In

this sense, software is an engineer’s dream material,

in which the model and its realization can be

perfectly coupled to each other.

This potent combination of abstraction and auto-

mation has inspired a set of modeling technologies

and corresponding development methods collec-

tively referred to as model-driven development

(MDD).
10,11

The defining feature of MDD is that

models have become primary artifacts of software

design, shifting much of the focus away from

program code. Models serve as blueprints from

which programs and related models are derived by

various automated and semiautomated means. The

degree of automation being applied today varies

from simple skeleton code derivation all the way

through to complete automatic code generation

(comparable to traditional compilation). Clearly, the

greater the levels of automation, the more accurate

the models and the greater the benefits of MDD.

However, there are many factors that must be

considered when selecting an optimal level of

automation for a given project. This includes, for

example, the availability of appropriate expertise

and tools, the specific nature of the application, the

amount and characteristics of legacy code, and so

on.

Model-driven methods of software development are

not particularly new and have been used in the past

with varying degrees of success. The reason they are

receiving more attention now is that the supporting

technologies have matured to the point where

automation can be used in practical applications to a

much larger extent. This is because the new

technologies are much more scalable, more efficient,

and much more easily integrated with existing tools

and methods than was the case in the past. The

degree of maturity of these technologies has reached

a point where many of their aspects can be

standardized—resulting in a commoditization of

much MDD tooling.

To that end, OMG, the industry consortium that first

standardized UML, has launched an initiative to

develop a body of standards that support MDD.

Called Model-Driven Architecture** (MDA**), the

initiative involved standards for modeling lan-

guages, such as UML,
7

standards for defining

modeling languages like the Meta-Object Facility or

MOF**,
12

standards for defining automated model

transformations, standards for defining model-based

software processes, and so on.

In the remainder of this article, we will examine

how the latest version of the UML standard, UML 2,

has been adjusted to meet the needs of MDD. First,

we examine the forces that led to the revision of the

original standard. This is followed by a summary of

the major new language capabilities. For conve-

nience, they have been grouped into five major

categories of changes. Each of these is then

described in a section of its own. The article

concludes with a view of current and anticipated

developments related to UML.

THE RATIONALE BEHIND UML 2

UML 2 is the first major revision of the UML

standard, following a series of lesser revisions.
7,8

Why was it necessary to revise UML?

The original UML standard was primarily designed

with the traditional development process in mind:

the model was primarily a means for documenting

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006 SELIC 609

and communicating high-level design ideas. This did

not require a precise modeling language. Nonethe-

less, a growing number of software architects

wanted their UML models to be precise specifica-

tions that could serve as formal blueprints to be

faithfully realized by the corresponding software

implementation. Any ambiguity in such models

could lead to misinterpretations and invalid real-

izations. This created pressure to define the

semantics of UML much more precisely. Simulta-

neously, many programmers were beginning to see

the benefits of more abstract graphical representa-

tions of their code, representations that were shorn

of the noise of programming-language syntax and

more clearly rendered its essence. For example, a

graph-based rendering of a class hierarchy that

shows relationships between classes visually is

generally more easily understood than the corre-

sponding textual representation. This quickly led to

the requirement to allow the code to be manipulated

in either graphical or textual form, whichever

happened to be more convenient at the time.

Therefore, it was necessary to define very precisely

the formal relationship between the graphics and the

code and also the semantics of UML diagrams.

Both tool vendors and users responded to this

pressure by defining individual specializations of

UML. Unfortunately, these custom variants differed

from case to case and from project to project, often

based on dubious or invalid interpretations of the

underlying UML concepts. This threatened to lead to

the same kind of fragmentation that the original

standard was intended to eliminate. A new, more

precise version of the standard was clearly neces-

sary to reduce the ambiguities of the original

standard. In addition, a more capable and more

clearly defined mechanism was required to support

domain-specific specializations of UML.

Whereas the pressure towards MDD was the

primary motivator for UML 2, another key factor

was the need to model important new technologies

that had emerged since the first release of the

standard, such as Web-based applications and

service-oriented architectures. Although all of these

could be represented by appropriate combinations

of existing UML 1 concepts, there were obvious

benefits to providing more direct ways of modeling

these capabilities.

Finally, although we still lack a sound and system-

atic theory of modeling language design, much has

been learned about suitable ways of defining,

structuring, and using such languages. For example,

new theories of meta-modeling and of model trans-

formations have emerged over the past 10 years,

which need to be incorporated into UML to ensure

its applicability and longevity. Although UML might

end up being the equivalent of FORTRAN in the

domain of software modeling languages, it is worth

recalling that FORTRAN is still an active language,

almost 50 years after its inception.

WHAT IS NEW IN UML 2

The new developments in UML 2 can be grouped

into the following five major categories, listed in

decreasing order of significance:

1. A significantly higher level of precision in the

definition of the language—This is a result of the

need to support the higher levels of automation

required for MDD. Automation implies the

elimination of ambiguity and imprecision from

models (and, hence, from the modeling language)

so that they can be transformed and analyzed by

specialized computer programs.

2. An improved language organization—This is

characterized by a modularity that not only

makes the language more approachable to new

users but also facilitates inter-working between

tools.

3. Significant improvements in the ability to model

large-scale software systems—Some modern soft-

ware applications represent integration of exist-

ing stand-alone applications into more complex

systems of systems. This is a trend that will likely

continue, resulting in ever more complex sys-

tems. To support such trends, flexible new

hierarchical capabilities were added to the

language to support software modeling at arbi-

trary levels of complexity.

4. Improved support for domain-based specializa-

tion—Practical experience with UML demon-

strated the value of its extension mechanisms.

These were consolidated and refined to allow

simpler and more precise refinements of the base

language.

5. Overall consolidation, rationalization, and clar-

ification of various modeling concepts resulting in

a simplified and more consistent language—This

involved consolidation of concepts, removal of

redundant concepts, refinement of definitions,

and the addition of clarifications and examples.

SELIC IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006610

Each of the these categories is described individually

below.

INCREASED PRECISION OF LANGUAGE
DEFINITION

Most early software modeling languages were

defined informally, with little attention paid to

precision. More often than not, modeling concepts

were explained using imprecise and informal natu-

ral language. This was deemed sufficient at the time

because the majority of modeling languages were

used either for documentation or for what Martin

Fowler refers to as design ‘‘sketching’’.
13

The idea

was to convey the essential properties of a design,

leaving detail to be worked out during implemen-

tation.

This, however, often led to confusion because

models expressed in such languages could be—and

often were—interpreted differently by different

individuals. Furthermore, unless the question of

model interpretation was explicitly discussed up

front, such differences could remain undetected, to

be unmasked only in the latter phases of develop-

ment when the cost of fixing the resulting problems

was much greater.

In contrast to most other modeling languages of the

time, to minimize ambiguity the first standardized

definition of UML was specified using a metamodel.

This is a model that defines the characteristics of

each UML modeling concept and its relationships to

other modeling concepts. The metamodel was

defined using what is, in essence, an elementary

subset of UML called MOF, consisting primarily of

concepts defined in UML class diagrams and

supplemented with a set of formal constraints

written in the Object Constraint Language (OCL).

This combination represented a formal specification

of the abstract syntax of UML (in contrast to its

concrete syntax or notation). The abstract syntax is

the set of rules that can be used to determine

whether a given UML model is well formed. For

example, such rules would allow us to determine

that a model in which two UML classes are joined by

a state machine transition is illegal.

Nonetheless, the degree of precision used in this

initial UML metamodel proved insufficient to sup-

port the full potential behind MDD (see, for

example, the discussion in Reference 14). In

particular, the specification of the semantics, or

meaning, of the UML modeling concepts remained

inadequate for MDD-oriented activities such as

automatic code generation or formal verification.

Consequently, the degree of precision used in the

definition of UML 2 was increased significantly. This

was achieved by the following means:

� A major refactoring of the language metamodel—

The metamodel of UML, specified using the MOF

language,
12

defines the formal rules to which a

well-formed (i.e., syntactically correct) UML

model must adhere. For UML 2, the core of this

metamodel was broken up into a set of fine-

grained low-level modeling concepts and patterns

that are, in most cases, too rudimentary or too

abstract to be used directly in modeling software

applications. However, their relative simplicity

makes it relatively easy to be precise about their

semantics and the corresponding well-formedness

rules. These finer-grained concepts are then

combined to produce the more complex user-level

modeling concepts. For instance, in UML 1, the

notion of ownership (i.e., elements owning other

elements), the concept of namespaces (named

collections of uniquely named elements), and the

concept of classifier (elements that can be

categorized according to their features), were all

inextricably bound into a single semantically

complex notion. (This also meant that it was

impossible to use any one of these without

implying the other two.) In the new UML 2

metamodel, these concepts were separated, and

their syntax and semantics were defined sepa-

rately.
� Extended and more precise semantics descrip-

tions—Defining the semantics of the UML 1

modeling concepts was problematic in a number

of ways. The level of description was highly

uneven, with some areas having extensive and

detailed descriptions (e.g., state machines),

whereas others had little or no explanations. The

UML 2 specification puts much more emphasis on

the semantics and, in particular, in the key area of

basic behavioral dynamics (see below). (A more

detailed discussion of the semantics of UML can

be found in Reference 15.)
� A clearly defined dynamic semantic framework—

The UML 2 specification clarifies some of the

critical semantic gaps in the original version,

including a clear specification of the relationship

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006 SELIC 611

between structure and behavior as illustrated in

Figure 1.

Note that the bottom (foundational) layer in this

framework deals with the semantics of structure.

This is because UML is, at its core, based on the

object paradigm, wherein all behavior is assumed to

emanate from the actions of objects. This core layer

covers the essential properties of the structural

concepts of UML, such as objects, variables, and

links, which provide the setting for behavior.

Overlaid on the foundational layer there is another

shared semantic layer. This layer, represented by

the middle area in Figure 1, is concerned with how

the core structural elements are created and

manipulated (the Intra-Object Behavior Base) as

well as with how objects communicate with each

other (the Inter-Object Behavior Base). The seman-

tics of primitive actions that can cause this behavior

are also part of this layer. The two shared layers in

this framework provide the shared foundation on

which the dynamic semantics of higher-level for-

malisms, such as state machines and interactions,

are based. This ensures that objects can interact

with each other regardless of which formalism is

used to describe their behavior. More details can be

found in References 15 and 7.

THE NEW LANGUAGE ARCHITECTURE

One of the immediate consequences of the increased

level of precision in UML 2 is that the language

definition has gotten bigger, even without account-

ing for the new modeling capabilities. This would

normally be of concern, especially given that the

original UML was criticized as being too rich and,

therefore, too cumbersome to learn and use. Such

criticisms typically ignore the fact that UML is

intended to address some of today’s most complex

software problems and that such problems demand

sufficiently powerful tools. (Successful technologies

such as automobiles and electronics have never

gotten simpler; it is a part of human nature to

persistently demand more of our machinery, which,

ultimately, implies more sophisticated tools. No one

would even contemplate building a modern sky-

scraper with basic hand tools.)

To deal with the problem of language complexity,

UML 2 was modularized in a way that allows

selective use of language modules. The general form

of this structure is shown in Figure 2. It consists of a

foundation comprising shared structural and be-

havioral modeling concepts, such as classes and

associations, on top of which is a collection of

vertical ‘‘sub-languages’’ or language units, each

one suited to modeling a specific form or aspect (see

Table 1). These vertical language units are generally

independent of each other and can, therefore, be

used independently. This was not the case in UML 1,

where, for example, the activities formalism was

based entirely on the state machine formalism.

Furthermore, the vertical language units are hier-

archically organized into up to three levels, with

each successive level adding more modeling capa-

bilities to those available in the levels below. This

provides an additional dimension of modularity so

that, even within a given language unit, it is possible

to use only specific subsets.

This architecture means that users can learn and use

only the subset of UML that suits them best. It is no

more necessary to become familiar with the full

extent of UML in order to use it effectively than it is

necessary to learn all of English to use it effectively.

As they gain experience, users have the option of

gradually introducing more powerful modeling

concepts as necessary.

As part of the same architectural reorganization, the

definition and structure of compliance has been

significantly simplified in UML 2. In UML 1, the

basic units of compliance were defined by the

packages of the metamodel, with literally hundreds

of possible combinations. This meant that it was

highly unlikely to find two or more modeling tools

that could interchange models, because each would

likely support a different combination of packages.

In UML 2, only three levels of compliance are

defined, and those correspond to the hierarchical

Figure 1
The UML 2 semantics framework

InteractionsState MachinesActivities

Inter-Object Behavior BaseIntra-Object Behavior Base

Actions

Structural Foundations

SELIC IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006612

language unit levels already mentioned and depicted

in Figure 2. (The infrastructure of UML defines an

additional two levels, but those are not visible or of

particular interest to the general UML user.) These

compliance levels are defined in such a way that

models at level n (n ¼ 1,2) are compliant with the

higher compliance levels; that is, a tool compliant

with a given level can import models produced by

tools that are compliant with any level equal to or

below its own, without loss of information.

In addition to the compliance levels, four distinct

types of compliance are also defined that cut across

each of the compliance levels:

1. Compliance with the abstract syntax—This means

compliance with the well-formedness rules of

UML as defined by the UML 2 metamodel. It also

includes the ability to interchange models with

other tools.

2. Compliance with the concrete syntax—This means

support for the UML 2 notation as defined in the

UML standard. In principle, it is possible for tools

to comply with the notation without necessarily

supporting the abstract syntax. This form of

compliance is intended for relatively simple tools

whose primary purpose is to assist in the drawing

of UML diagrams.

3. Compliance with both abstract and concrete

syntax—This type of compliance combines the

two forms of compliance listed above and is

presumed to be supported by most tools. Com-

pliance of this type means compatibility with

either of the previous two types (at a given level

of compliance).

4. Compliance with both the abstract and concrete

syntax and the diagram interchange standard—

This form of compliance adds support for the

diagram interchange standard,
16

which ensures

the preservation of graphical information related

to a model, such as font selections, position and

sizing of graphical elements, and so forth, when

models are exchanged between compliant tools.

For example, a given tool might provide abstract

syntax compliance up to level 2 but concrete syntax

compliance only up to level 1. This means that it

does not support the standard notation for all the

level-2 concepts which it provides (e.g., it may use a

vendor-specific notation for some or all of the level-

2 concepts, and at the same time, use the standard

UML notation for the level-1 concepts).

This matrix of three compliance levels and four

types yields 12 different forms of compliance with

varying degrees of capability, such that certain less

capable forms are upward compatible with certain

more capable forms. Consequently, in UML 2, model

interchange between compliant tools from different

Figure 2
The language architecture of UML 2

Language Foundation

OCL Structures State
Machines

Activities Interactions

Level 3

Level 1

Level 2

• • •

Table 1 The language units of UML 2

Language Unit Purpose

Actions (Foundation) modeling of
fine-grained actions

Activities Data and control flow
behavior modeling

Classes (Foundation) modeling of
basic structures

Components Complex structure modeling
for component technologies

Deployments Deployment modeling

General Behaviors (Foundation) common
behavioral semantic base
and time modeling

Information Flows Abstract data flow modeling

Interactions Inter-object behavior modeling

Models Model organization

Profiles Language customization

State Machines Event-driven behavior modeling

Structures Complex structure modeling

Templates Pattern modeling

Use Cases Behavioral requirements
modeling

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006 SELIC 613

vendors is now more than just a theoretical

possibility.

MODELING OF LARGE-SCALE SYSTEMS
The number of features added in UML 2 is inten-

tionally relatively small in order to avoid the

infamous ‘‘second system’’ effect,
17

whereby a

language becomes bloated by an excess of new

features demanded by a highly diverse user com-

munity. In fact, the majority of new modeling

capabilities are essentially simply extensions of

existing features that allow them to be used for

modeling large-scale software systems. Moreover,

these extensions were all achieved by using the

same basic approach: recursive application of the

same basic set of concepts at different levels of

abstraction. This means that model elements of a

given type could be combined into units that, in

turn, would be used as the building blocks to be

combined in the same way at the next level of

abstraction, and so on—analogous to the way that

procedures in programming languages could be

nested within other procedures to any desired depth.

Specifically, the following modeling capabilities are

extended in this way:

� Complex structures
� Activities
� Interactions
� State machines

The first three of these capabilities account for more

than 90 percent of the new features added to UML 2.

Complex structures
The basis for this set of features comes from long-

term experience with various architectural descrip-

tion languages, such as UML-RT,
18

Acme,
19

and

SDL.
20

These languages are characterized by a

relatively simple set of graph-like concepts: basic

structural nodes called parts that may have one or

more interaction points called ports and that are

interconnected by communication channels called

connectors. Aggregates of this type may be encap-

sulated within higher-level units, which can have

their own ports so that they can themselves be

combined with other similar units into yet higher-

level compositions, as shown in Figure 3.

In the example, a collaboration structure consisting

of internal parts and connectors is nested within a

class specification. This means that, upon creation,

all instances of this class will have an internal

structure specified by the class definition. For

example, in Figure 3, parts/partA:A and/partB:B are

nested within part/subsystem1:C. The latter repre-

sents an instance of the composite class C. Note that

other instances of class C have the same structural

pattern including all the ports, internal parts, and

interconnections.

The rudiments of this type of structural composition

based on parts and connectors existed in the UML 1

collaboration diagrams. However, it was not possi-

ble to easily use the concepts recursively to

construct multilevel structural decomposition hier-

archies. Also, the crucial port concept was missing.

This important concept serves a dual purpose.

First, a port allows an object to distinguish between

different potentially concurrent collaborators, based

on which port is used for a given interaction. In

principle, each port could present a different inter-

face, depending on the type of interaction taking

place through that port. This type of interface

separation is particularly useful when modeling

complex architectural-level components, which are

often involved in multiple interactions. In addition,

ports act as intermediaries, relaying information

back and forth between the internal entities of the

component and its environment. If all external

interactions of a component occur through its ports,

then its internal entities are fully isolated from any

direct knowledge of any external entities. Conse-

quently, the same component definition can be

reused in many different applications without any

modification. In other words, ports enable true two-

way encapsulation of components by preventing

direct coupling between component internal entities

and external entities in either direction.

Figure 3
Example of the use of new structure modeling concepts

connector
/subsystem2:D

/partA:A /partB:B

/subsystem1:C

port

part

SELIC IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006614

It turns out that by simple recursive application of

these three simple concepts (ports, parts, and

connectors), it is possible to model arbitrarily

complex software systems.

Activities

Activities in UML are used to model flows of various

kinds: signal or data flows as well as algorithmic and

procedural (i.e., control) flows. There are numerous

domains and applications that are most naturally

rendered by such flow-based descriptions. In par-

ticular, this formalism was embraced by business-

process modelers and by systems engineers, who

tend to view many of their systems as intercon-

necting signal processors.

The UML 1 version of activity modeling had a

number of serious limitations in the types of flows

that could be represented. Many of these were due

to the fact that activities were overlaid on top of the

basic state-machine formalism and were, therefore,

constrained to the semantics of state machines.

UML 2 replaced the state-machine underpinning

with a much more general semantic foundation

based on Petri nets, which eliminates all of these

restrictions. In addition, inspired by a number of

industry-standard business-processing formalisms,

including notably BPEL4WS,
21

a very rich set of new

and highly refined modeling features were added to

the basic formalism. These include the ability to

represent interrupted activity flows, sophisticated

forms of concurrency control, and diverse buffering

schemes. The result is a very rich modeling toolset

that can represent a wide variety of flow types.

The integration of the UML action semantics

specification into the new semantic foundations

provided for activities is an important new devel-

opment. UML action semantics were first introduced

as a separate OMG specification, which was

subsequently included in the UML 1.5 revision as an

addendum. Action semantics provide a language-

neutral facility for specifying detail-level behavior in

the context of a UML model (see also Figure 1). This

includes the definition of actions that create and

destroy objects, that read and write object attributes

and variables, that invoke operations and send

signals, and so forth. In effect, action semantics

complement the higher-level modeling capabilities

of UML to the extent that it is possible to use UML as

a fully-fledged implementation language. The rules

for combining UML actions using control and data

flows are essentially the same as the composition

rules for combining activities, so that the consol-

idation of these two areas resulted in a significant

overall simplification.

As with other complex structures, activities and

their interconnecting flows can be recursively

grouped into higher-level activities with clearly

defined inputs and outputs. These can, in turn, be

combined with other activities to form more com-

plex activities, up to the highest system levels.

Interactions

Interactions in UML 1 were represented either as

sequenced message annotations on collaboration

diagrams or as separate sequence diagrams. Un-

fortunately, two fundamental capabilities were

missing:

1. The ability to reuse sequences that may be

repeated in the context of more extensive (higher

level) sequences. For example, a sequence that

validates a password may appear in multiple

contexts in a given application. If such repeated

sequences cannot be packaged into separate

units, they have to be defined numerous times,

not only adding overhead but also complicating

model maintenance (e.g., when the sequence

needs to be changed).

2. The ability to adequately model various complex

control flows that are common in representing

interactions of complex systems, including repe-

tition of subsequences, alternative execution

paths, and concurrent and order-independent

execution.

Fortunately, the problem of specifying complex

interactions was extensively studied in the tele-

communications domain, where a standard was

evolved based on many years of practical experience

in defining communications protocols.
22

This for-

malism was used as a basis for representing

interactions in UML 2.

The key innovation was the introduction of an

interaction as a separately named modeling unit.

Such an interaction represents a sequence of inter-

object communications of arbitrary complexity. It

may even be parameterized to allow the specifica-

tion of context-independent interaction patterns.

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006 SELIC 615

These ‘‘packaged’’ interactions can be invoked

recursively from within higher-level interactions

analogous to macro or subroutine invocations (the

‘‘ref’’ block in Figure 4 labeled CheckPIN). Just like

macros and subroutines, they provide both a reuse

facility and an abstraction facility.

As one might expect, such references to other

interactions can be nested to an arbitrary degree—

yet another example of the use of recursion in UML 2

to achieve scalability. Furthermore, interactions can

serve as operands in complex control constructs

such as loops (for example, a given interaction may

have to be repeated some number of times) and

alternatives. UML 2 defines a number of convenient

modeling constructs of this type, providing a very

rich facility for modeling complex end-to-end

behavior at any level of decomposition.

In Figure 4, we see an example of an extended

interaction, specified in the form of a sequence

diagram (sd), which models the use of an ATM

machine, In this case, the interaction ATMAccess first

references (i.e., invokes) another lower-level trans-

action called CheckPIN (the contents of this inter-

action are not shown in the diagram).

Note that the latter interaction has a parameter (in

this case, say, the number of times an invalid

personal identification number (PIN) can be entered

before the transaction is canceled). After that, the

client sends an asynchronous message specifying

what kind of interaction is required and, based on

the value in that message, one of two possible

further execution paths is selected (i.e., either the

DispenseCash interaction or the PayBill interaction

is performed). For compactness, both alternatives

are specified in the same diagram. This is indicated

by enclosing them in the same ‘‘alt’’ (alternative)

block.

Interactions in UML 2 can be represented by

sequence diagrams as shown in the preceding

example as well as by other diagram types—

including the collaboration-based form defined in

UML 1. There is even a nongraphical tabular

representation.

State machines

The main new capability added to state machines in

UML 2 is reminiscent of the aforementioned ‘‘ref’’

concept in interactions: the ability to define a

generic state-machine pattern and then reuse it in

different situations. The reusable state-machine

pattern is called a submachine. It is like any other

state-machine definition with one important differ-

ence: it may include one or more entry and exit

pseudostates. These are points through which the

submachine is bound to its invoking context.

Specifically, entry points are points through which

an incoming transition contained in the invoking

state machine can enter the submachine, and exit

points are points that can be bound to outgoing

transitions in the invoking state machine.

An example can be seen in Figure 5. Figure 5A

shows the definition of the submachine CheckPIN,

which specifies the behavior required to input a PIN

on an ATM and validate it against a database of

valid PINs. This submachine can then be invoked in

higher-level state machines where appropriate. One

example of such an invocation is shown in Figure

5B, where the state CheckingPIN represents an

invocation of the CheckPIN submachine.

One other notable state-machine innovation in

UML 2 is a clarification of the semantics of state-

machine inheritance. In effect, a subclass inherits

the state machine of its parents and may add new

elements (e.g., states, transitions, triggers) or

redefine existing elements in a compatible way.

alt

[t=”bill”]

[t=”cash”]

Figure 4
Example of a complex interaction model

:Client :ATM

ref
Dispense Cash

ref
PayBill

Msg(t)

sd ATMAccess

ref
CheckPIN(3)

SELIC IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006616

LANGUAGE SPECIALIZATION CAPABILITIES

From its inception, UML was conceived as a

platform for a family of related modeling lan-

guages—languages that share a common semantics

framework and, possibly, a common notation. This

was achieved by providing so-called semantic

variation points in the definition of the language.

These are areas where the standard either provides a

selection of alternatives (e.g., single or multiple

inheritance) or leaves certain details unspecified

(e.g., scheduling policy, method dispatching rules).

The language is then customized by adding the

necessary constraints and extensions. However, any

such extensions must not violate the standard

abstract syntax and semantics.

Experience with UML 1 has proven this to be a good

design decision, because a very common way of

applying UML is to first define a UML profile for a

particular problem or domain and then use that

profile instead of or in addition to standard UML. In

essence, profiles are a way of producing what are

now commonly referred to as domain-specific

languages (DSLs).

An alternative to using UML profiles is to define a

new custom modeling language using the MOF

standard and tools. The latter approach has the

obvious advantage of providing a clean slate,

enabling the definition of a language that is

optimally suited to the problem at hand. At first

glance, this may seem preferable to DSL definition,

but closer scrutiny reveals that there can be serious

drawbacks to this approach.

As noted in the introduction, too much diversity

leads to the kind of fragmentation problems that

UML was designed to eliminate. In fact, this is one of

the primary reasons why it was accepted so widely

and so rapidly.

Fortunately, the profile mechanism provides a

convenient solution for many practical cases. This is

because there is typically a lot of commonality even

between diverse DSLs. For example, practically any

object-oriented modeling language needs to define

the concepts of classes, attributes, associations,

interactions, and so forth. UML, which is a general-

purpose modeling language, provides just such a

convenient and carefully defined collection of useful

concepts. This makes it a good starting point for a

large number of possible DSLs.

There is more than just conceptual reuse at play

though. Because a UML profile has to be compatible

with standard UML by definition, (1) any tool that

supports standard UML can be used for manipulat-

ing models based on that profile, and (2) any

knowledge of and experience with standard UML is

directly applicable. Therefore, many of the frag-

mentation problems stemming from diversity can be

mitigated or even avoided altogether. This type of

reasoning led the international standards body

responsible for the SDL language
20

—a DSL widely

Figure 5
Example of a reusable submachine and its invocation

CheckPIN start

CollectPIN

enterKey

WaitForValidation

validationResult

start

[result ~= OK] [result == OK]
invalidPINvalidPIN

Initializing

HandlingTransaction ErrorHandling

trxDone errDone

CheckingPIN:
CheckPIN

invalidPINvalidPIN

initDone

[last]not [last]

A B

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006 SELIC 617

used in telecommunication—to redefine SDL as a

UML profile.
23–24

This is not to say that all DSL can and should be

realized as a UML profile; there are indeed many

cases where UML may lack the requisite founda-

tional concepts that can be cast into corresponding

DSL concepts. However, given the generality of

UML, it may be more widely applicable than might

first appear.

With these considerations in mind, the profiling

mechanism in UML 2 has been rationalized and its

capabilities extended. The conceptual connection

between a stereotype and the UML concepts that it

extends has been clarified. In effect, a UML 2

stereotype is defined as if it were simply a subclass

of an existing UML metaclass, with associated

attributes (representing tags for tagged values),

operations, and constraints. The mechanisms for

writing such constraints using a language such as

OCL have been fully specified.

In addition to constraining individual modeling

concepts, a UML 2 profile can also explicitly hide

UML concepts that make no sense or are unneces-

sary in a given DSL. This allows the definition of

minimal DSL profiles.

Finally, the UML-2 profiling mechanism can also be

used as a mechanism for viewing a complex UML

model from multiple different domain-specific per-

spectives—something generally not possible with

DSLs (i.e., a UML profile can be selectively

‘‘applied’’ or ‘‘deapplied’’ without affecting the

underlying UML model in any way). For example, a

performance engineer may choose to apply a

performance-modeling interpretation over a model,

attaching various performance-related measures to

elements of the model. These can then be used by an

automated performance analysis tool to determine

the fundamental performance properties of a soft-

ware design. At the same time and independent of

the performance modeler, a reliability engineer

might overlay a reliability-specific view on the same

model to determine its overall reliability character-

istics, and so on.

CONSOLIDATION OF CONCEPTS

The consolidation of concepts includes the removal

of overlapping concepts and numerous editorial

modifications, such as clarifying confusing descrip-

tions and standardizing terminology and specifica-

tion formats.

The removal of overlapping concepts and the

clarification of poorly defined concepts have been

other important requirements for UML 2. The three

major areas affected by this are actions and

activities, templates, and component-based design

concepts.

The consolidation of actions and activities was

described earlier. From the user’s point of view,

these are formalisms that occur at different levels of

abstraction because they typically model phenom-

ena at different levels of granularity. However, the

shared conceptual base results in an overall sim-

plification and greater clarity.

In UML 1, templates were defined very generally:

any UML concept could be made into a template.

Unfortunately, this generality was an impediment to

the application of the concept because it allowed for

potentially meaningless template types and template

substitutions. The template mechanism in UML 2

was restricted to cases that were well understood:

classifiers, operations, and packages. The first two

were modeled after template mechanisms found in

popular programming languages.

In the area of component-based design, UML 1 had a

confusing abundance of concepts. One could use

classes, components, or subsystems. These concepts

had much in common but were subtly different in

non-obvious ways. There was no clear delineation

as to which to use in any given situation. Was a

subsystem just a ‘‘big’’ component? If so, how big

did a component have to be before it became a

subsystem? Classes provided encapsulation and

realized interfaces, but so did components and

subsystems.

In UML 2, all of these concepts were aligned, so that

components were simply defined as a special case of

the more general concept of a structured class, and,

similarly, subsystems were merely a special case of

the component concept. The qualitative differences

between these were clearly identified so that

decisions on when to use which concept could be

made on the basis of objective criteria.

On the editorial side, the format of the specification

was consolidated with the semantics and notation

SELIC IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006618

specifications for the modeling concepts, combined

for easier reference.

Each metaclass specification has been expanded

with information that explicitly identifies semantic

variation points, notational options, and the rela-

tionship of the specification to the UML 1 specifi-

cations. Also, the terminology has been made

consistent so that a given term (e.g., type, instance,

specification, occurrence) has the same general

connotation in all contexts in which it appears.

CONCLUSION

UML 2 was specifically designed to allow a gradual

introduction of model-driven methods into software

development. For those who prefer it as a ‘‘design

sketching’’ tool, it can still be used in the same

informal manner as UML 1. Moreover, because the

new modeling capabilities are nonintrusive, in most

cases such users will not see any change in the look

and feel of the language.

The opportunity to use UML for more advanced

forms of MDD is now open. The increased precision

and enhanced semantics definition are available in

the revised standard, to be used—if desired—with

very sophisticated automatic code generation tech-

niques.

Although the language has added some new

features, its overall structure was carefully reor-

ganized to allow a modular and graduated approach

to adoption: users only need to learn the parts of the

language that are of interest to them and can safely

ignore the rest. As their experience and knowledge

increases, they can selectively add new language

modules. This reorganization of the language also

includes a major simplification of the compliance

strategy to facilitate interoperability between com-

plementary tools as well as between tools from

different vendors.

To avoid language bloat, only a small number of

new features were added, and practically all of those

features were designed along the same recursive

principle that enabled the modeling of very large

and complex systems. In particular, extensions were

added to more directly model software architec-

tures, complex system interactions, and flow-based

models for applications such as business-process

modeling and systems engineering.

The language extension mechanisms were slightly

restructured and simplified for a more direct way of

defining DSLs based on UML. These languages can

directly take advantage of UML tools and expertise,

both of which are abundantly available.

The overall result is a second-generation modeling

language that has the potential to help developers

construct more sophisticated software systems

faster and more reliably. In essence, software

development with UML 2 need not be different from

traditional software design, except that it is based on

higher levels of abstraction and automation. It

requires the same types of intuition, skill, and

expertise that are the bread and butter of every

software developer.

At the time of writing, the first minor revision of the

original UML 2 specification has been finalized,

resulting in UML 2.1. This revision adds fixes to the

abstract syntax to eliminate minor inconsistencies

and ambiguities. No significant feature additions to

UML 2 are anticipated over the next several years. In

general, such standards should not change too

frequently, as it is difficult for users, tool vendors,

and book authors to keep up. There should be

enough of a pause to allow ample time for sufficient

experience with the present version to accumulate

and for new technologies and relevant theoretical

developments to emerge. Only after these are well

understood should another major revision be

considered.

*Trademark, service mark, or registered trademark of the
International Business Machines Corporation.

**Trademark, service mark, or registered trademark of Sun
Microsystems Inc., or Object Management Group, Inc. in the
United States, other countries, or both.

CITED REFERENCES
1. I. Graham, Object-Oriented Methods: Principles and

Practice (3rd edition), Addison-Wesley, Reading, MA
(2001).

2. J. Rumbaugh, M. Blaha, W. Lorenson, F. Eddy, and W.
Premerlani, Object-Oriented Modeling and Design, Pren-
tice Hall, Upper Saddle River, NJ (1990).

3. G. Booch, Object-Oriented Analysis and Design with
Applications (2nd edition), Addison-Wesley Professional,
Reading MA (1993).

4. I. Jacobson, M. Christerson, P. Jonsson, and G. Över-
gaard, Object-Oriented Software Engineering: A Use Case

IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006 SELIC 619

Driven Approach, Addison-Wesley Professional, Reading,
MA (1992).

5. D. Harel, ‘‘Statecharts: A Visual Formalism for Complex
Systems,’’ Science of Computer Programming 8, No. 3,
231–274 (1987).

6. Unified Modeling Language (UML), Version 1.5, OMG
document formal/03-03-01, Object Management Group
(2003), http://www.omg.org/cgi-bin/doc?formal/
03-03-01.

7. UML 2.0 Superstructure Specification, OMG document
formal/05-07-04, Object Management Group, Inc. (2005),
http://www.omg.org/cgi-bin/doc?formal/05-07-04.

8. J. Rumbaugh, I. Jacobson, and G. Booch, The Unified
Modeling Language Reference Manual (2nd edition),
Addison-Wesley, Reading, MA (2005).

9. L. Lee, The Day the Phones Stopped Ringing, Plume
Publishing (1992).

10. A. Brown, ‘‘An Introduction to Model Driven Architec-
ture,’’ developerWorks, IBM Corporation (2004), http://
www-106.ibm.com/developerworks/rational/library/
3100.html.

11. G. Booch, A. Brown, S. Iyengar, J. Rumbaugh, and B.
Selic, ‘‘An MDA Manifesto,’’ in The MDA Journal, D.
Frankel and J. Parodi, Editors, Meghan-Kiffer Press
(2004).

12. MetaObject Facility (MOF) 2.0 Core Specification, Avail-
able Specification, OMG document ptc/04-10-15, Object
Management Group (2004), http://www.omg.org/
cgi-bin/doc?ptc/2004-10-15.

13. M. Fowler, UML Distilled (3rd edition), Addison-Wesley,
Reading, MA (2004).

14. P. Stevens, ‘‘On the Interpretation of Binary Associations
in the Unified Modeling Language,’’ Journal of Software
and Systems Modeling 1, No. 1, 68–79 (2002).

15. B. Selic, ‘‘On the Semantic Foundations of Standard UML
2.0,’’ Formal Methods for the Design of Real-Time
Systems, in Lecture Notes in Computer Science 3185, M.
Bernardo and F. Corradini, Editors, Springer-Verlag
(2004), pp. 181–199.

16. UML 2.0 Diagram Interchange, Final Adopted Specifica-
tion, OMG document ptc/03-09-01, Object Management
Group (2004), http://www.omg.org/cgi-bin/apps/
doc?ptc/03-09-01.pdf.

17. F. Brooks, Jr., The Mythical Man-Month (1995 edition),
Addison-Wesley, Reading, MA (1995).

18. B. Selic, ‘‘Using UML for Modeling Complex Real-Time
Systems,’’ Languages, Compilers, and Tools for Embedded
Systems, in Lecture Notes in Computer Science 1474, F.
Mueller and A. Bestavros, Editors, Springer-Verlag
(1998), pp. 250–260.

19. D. Garlan, R. Monroe, and D. Wile, ‘‘Acme: an
Architecture Description Interchange Language,’’ Pro-
ceedings of the 1997 Conference of the Centre for
Advanced Studies on Collaborative Research, ACM, New
York (1997), p. 7.

20. International Telecommunication Union, ITU Recom-
mendation Z.100: Specification and Description Language
(SDL), ITU-T (August 2002).

21. S. Thatte, Business Process Execution Language for Web
Services (Version 1.1), BEA Systems, Inc., IBM Corpo-
ration, Microsoft Corporation, SAP AG, and Siebel
Systems (May 5, 2003), ftp://www6.software.ibm.com/
software/developer/library/ws-bpel.pdf.

22. International Telecommunication Union, ITU Recom-
mendation Z.120: Message Sequence Chart (MSC), ITU-T
(April 2004).

23. International Telecommunication Union, ITU Recom-
mendation Z.109: SDL Combined with UML, ITU-T
(2000).

24. International Telecommunication Union, ‘‘Study Group
17: Question 13/17—System Design Languages Frame-
work and Unified Modeling Language,’’ ITU-T Study
Group 17 (2003), http://www.itu.int/ITU-T/
studygroups/com17/sg17-q13.html.

Accepted for publication December 26, 2005.

Bran Selic
IBM Rational Software, IBM Canada, 770 Palladium Dr.,
Kanata, Ontario, Canada, K2V 1C8 (bselic@ca.ibm.com).
Mr. Selic is an IBM Distinguished Engineer at IBM Canada
working on the CTO team for IBM’s Rational brand. He is also
an Adjunct Professor of Computer Science at Carleton
University in Ottawa, Canada. He has close to 40 years of
experience in designing, implementing, and maintaining
large-scale industrial software systems, working mostly with
telecommunications, aerospace, robotics, and large financial
systems. In the late 1980s, he pioneered the application of
MDD methods and tools in the real-time domain and is the
primary author of a reference text on this topic. In 1992, he
cofounded ObjectTime Limited, a highly successful company
that developed software tools for MDD. He is recognized as an
expert in modeling language design and MDD and has written
many papers and articles on this subject. A frequently invited
speaker and lecturer at various technical conferences and
symposia, he is currently chair of the OMG team responsible
for maintaining the UML modeling language standard. He
received a Dipl.Ing degree (1972) and a Mag.Ing. degree
(1974) from the University of Belgrade in Belgrade,
Yugoslavia. He has been living and working in Canada since
1977. &

SELIC IBM SYSTEMS JOURNAL, VOL 45, NO 3, 2006620

Published online July 11, 2006.

