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Abstract: Swarm intelligence has interested researchers in various areas of research for several
decades because of its stability, resilience and simplicity. Several researchers have used swarm
intelligence behaviours to design systems which can accomplish single tasks. In this paper,
we will make a step forward by designing a swarm intelligent system that draws from two
different natural swarms, bees and slime mould, to form an integrated underwater swarm
robotic exploration system. An agent based simulation of such a system is presented in this
paper along with some basic performance evaluation measures of the presented system. The
main question the authors are attempting to answer through this model is how feasible the such
an exploration system would be with regards to time, the number of robots allocated by the
decentralized system for exploring interesting locations and the resilience of such a system to
failures in robots. The first simulation results obtained from this model shows how decentralized
control inspired by swarm intelligence can be used to design systems for real world applications.
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1. INTRODUCTION

Swarm intelligence is a widely researched phenomenon in
bees (Schmickl and Crailsheim, 2004), fireflies (Narayanan
et al., 2017), slime mould (Nakagaki, 2001; Trianni et al.,
2003) etc. A well known aspect of swarming behaviour that
makes it attractive to technical systems is its resilience
(Varughese et al., 2017) and its simplicity. While many
practical applications for swarm intelligent engineered sys-
tems have been suggested (Tan and Zheng, 2013), swarm
intelligent systems are only beginning to find applications
in engineered systems. Swarm intelligence is especially
interesting in systems where a high number of entities
makes it difficult to design classical centralized controllers.

The project subCULTron (subCULTron, 2015) aims to de-
velop an autonomous underwater robotic society (Thenius
et al., 2016) comprising of three swarms of bio-inspired
robots that monitor the environment in a marine habitat.
The three robotic swarms forming the society are:

(1) ”aPads” which are robots that act as base stations
on the ,water surface for docking with other swarm
members, communicating wit,h external entities, col-
lecting solar energy, etc.

(2) ”aFish” are a group of agile robots which can move
around underwater for exploring new areas and ex-
changing information between sub swarms.

(3) ”aMussels” are a swarm of robots with high sensing
abilities and very low power consumption. They dive
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down to the water body bed to collect data and
energy.

This robotic society will be deployed in the environmen-
tally diverse and dynamic lagoon of Venice to perform long
term measurements and exploration. The subCUTLron
system aims to produce time synchronized measurements
of various parameters at different locations which will be
beneficial for oceanographic research in Venice. The sub-
CULTron system stands out from traditional engineered
systems as it utilizes a combination of the strengths of clas-
sical control systems and naturally occurring swarm intelli-
gent behaviours to accomplish its goals. The designed sys-
tem will have to identify areas of interest using the aFish
and then communicate the coordinates of these interesting
locations to the aMussel swarm. Once there is sufficient
data collected, the aMussel swarm collectively decides to
split into groups in order to explore the interesting areas
suggested by the aFish. In this paper, the authors model
one of the ma,in tasks of project subCULTron - a robotic
monitoring and exploratory system which is autonomous,
self-sustaining and resilient. The question the authors seek
to answer through this model are as follows:

(1) How feasible is the designed system with respect to
time taken to explore the area?

(2) How well do aMussels split into groups to perform
monitoring at the ”areas of interest”?

(3) How stable is the collective decision of aMussels in
case of aMussel failures during operation?

The exploration system described in this paper is inspired
by natural swarms that explore their surroundings to
scout for food. During exploration, the agile robots, aFish,
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perform the role of scouts by moving around in the
environment to search for good quality food sources which
is later exploited by foragers. Bees are one of the widely
researched and most sophisticated foragers in the animal
kingdom. In honeybee colonies the foraging activities are
controlled by a self-organised process that uses dances as
communication vector (Frisch, 1965; Seeley, 1992), as well
as individually perceived waiting times (Schmickl et al.,
2010; Anderson and Ratnieks, 1999). Due to a complex
network of feedbacks of individually experienced queuing
delays while unloading and observed dances, different
groups of bees are able to adjust workload balance in
a de-central, self-organised manner and optimise colony
efficiency. Further the colony is able to detect changes in
the environment, and react adequately to them (Schmickl
and Crailsheim, 2004; Thenius et al., 2008). Since bees do
several tasks the subCULTron system will need to cope
with, we will model the exploration by aFish inspired by
bees. Another aspect of decentralized decision making is
ensuring that the agents have the same information as far
as possible in order for them to make coherent decisions.
In a classical engineering system, this can be accomplished
by broadcasting information to all agents. However, since
the aMussels and aFish in project subCULTron has local
communication using blue light (Thenius et al., 2016),
such a broadcasting mechanism is not an option. In order
to ensure this, we take inspiration from the chemical
signal (cAMP) based communication mechanism of slime
mould (Alcantara and Monk, 1974). This communication
mechanism has has inspired various algorithms in technical
systems (Nakagaki, 2001; Varughese et al., 2016).

2. METHOD

As explained in Section 1, we employ a method which is
inspired by the dance based source selection system of bees
for aFish and the slime mould inspired scroll waves for
information spreading through the swarm. We will briefly
look into the behaviours that we take inspiration from and
how the behaviours are implemented in the agent based
model developed in this paper.

2.1 Recruitment by waggle dance

The mechanism by which worker bees recruit other workers
to a food source has been studied for more than half a
century (Frisch, 1965; Seeley, 1992). When a rich food
source is discovered by a worker bee, she returns to the hive
and recruits her nest mates to join with her to exploit the
food source (Biesmeijer and Seeley, 2005). The mechanism
by which the worker bee recruits her nest mates is known
as a “waggle dance” through which a bee performs a
dance symbolizing her recent journey to the food source.
Through this dance, the nest mates get a rich amount
of information including the distance to the food source,
its direction and even the odour of the food source. This
dance can be decrypted by the other bees into a flight path
to the food source referred to by the dancer. Some bees
which see this dance fly to the food source and depending
on the quality of the food source, more and more bees
are recruited by more dancers. The frequency of dance is
correlated with the quality of the food source and hence
a bee trying to communicate a better source is likely to
attract more followers (Seeley et al., 1991).

Fig. 1. A typical instantiation of the subCULTron explo-
ration system modelled in Netlogo in shown in the
figure. The array of grey circular dots represent the
group of connected aMussels (bottom left corner),
the red arrows represent the aFish (surrounding the
group of aMussels). The long blue patches represent
obstacles and the smaller patches in different shades of
yellow represent the interesting areas coloured accord-
ing coloured according to how interesting the areas
are.

.

2.2 Scroll waves based information exchange

Slime mold (Dictyostelium Discoideum), is a free living
diploid life form that has been studied by many researchers
in the past. Chisholm and Firtel (2004) divide its life cycle
as follows: aggregation, streaming, slug, culmination and
fruiting body. Each organism starts its life as a unicellular
amoeba, but during starvation they aggregate with other
slime mould cells to form a multicellular organism. During
the aggregation phase, some cells release a quickly diffusing
chemical into the environment known as Cyclic Adenosine
Monophosphate (cAMP) (Siegert andWeijer, 1992). When
other cells perceive this chemical spike, they move towards
areas of high cAMP concentration and release cAMP
themselves, thereby relaying the signal. Through repeated
relaying of the signal through the neighbouring cells, the
entire swarm is attracted towards the original cell that
produced the signal. Slime mould cells are able to release
cAMP at an interval of 12-15 seconds (Alcantara and
Monk, 1974) during which the cells are insensitive to
other incoming cAMP signals. This interval is known as
a refractory phase and is crucial towards relaying of the
signal. The communication mechanism described above
causes “scroll waves” to propagate through the swarm
which enables the aggregation of slime mould to the
original cell that produced the chemical spike.

2.3 The subCULTron exploratory system

In the agent based model, we will employ two types
of agents to represent the aMussels and the aFish. The
task of the entire system is to find areas of interest,
communicate it to the aMussel so that the aMussels can
make a decision to move from the initial deployment
area to areas of interest in a purely de-central manner.
While introducing a designing for the robotic exploration
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system it is mandatory to talk briefly about the scope of
relevant physical capabilities of the robots developed in
project subCULTron as well as physical dimensions of the
modelled environment.

Figure 1 shows an instantiation of the subCULTron ex-
ploration system before the the respective run started.
The aMussels and aFish are represented in Figure 1 as
circular and arrow like shapes respectively. The yellow
patches shown in Figure 1 are areas that would be of
potential interest to the exploration system. Each interest
area represented by yellow patches have an associated
quality values. Each patch in the model is taken to be
an area of one square meter. The area shown in Figure 1
is comparable a 10,000 square meters (or 1 hectare) area in
the real world. The blue obstacles are added at random at
the beginning of each simulation run to represent shallow
areas. In reality, aFish robots can move at an average
speed of 0.5 meters per second. In simulation, one tick
is considered to be one second in real time and hence the
average speed the red arrow like agents representing the
aFish in simulation is 0.5 patches per tick. The aMussels
are represented by the white dots in simulation; a relevant
similarity between the agents in the simulation and the
aMussels in the real world is the communication mecha-
nism. aMussels communicate using modulated blue/green
light which can be perceived by other robots in its sur-
roundings. This communication constraint is implemented
in simulation in it that any message broadcast by any
aMussel can be heard by all other agents within a patch
distance of 1.5 patches which is analogous to 1.5 meters
in the real world environment. In the real world, from our
tests, the range of blue light communication under water
varies from 0.7 to 2 meters depending on the turbidity
of water (Thenius et al., 2016). Unless explicitly stated
otherwise, all the experiments conducted in this paper will
be done with the three areas of interest to be explored, 100
aMussels and 20 aFish. As far as this model is concerned,
the aPad would only acts as a robot which would transport
aMussels from one place to the other and therefore, we
will omit aPads from this model. Instead of aPads, we
can safely assume without affecting the performance of
the model that aMussels can make a one time movement
from instantiation patch to an area of interest.

Fig. 2. State transition diagram of aMussels are shown in
the diagram

.

aMussel behaviour Inspired by the scroll wave based
communication of slime mould, we employ this method for
diffusion of information through the swarm. Any message
given to any aMussel will be communicated to its neigh-
bours and in consequence, any message will propagate
through the swarm similar to the “scroll wave” in case
of the slime mould swarm. This scroll wave based mes-
sage propagation is accomplished by having the following
basic behaviour as shown in Figure 2. By default, all
the aMussels are in “listening” state. All the aMussels
contain a database where it stores the interesting locations
it received from the aFish. During the listening state,
the aMussel prepares a “source suggestion” for the aFish
by inspecting its own database of interesting locations
and computing the least reported location. If an aMussel
receives a message, it transitions into the “store message”
state where it stores the message it received and then
it sends out the same message in the “relay message”
state. After broadcasting the message by means of a scroll
wave, the aMussel transitions into the “refractory” state
where it remains insensitive to all incoming messages for
a particular period of time called the refractory time, say
tr. Following the time period, tr, aMussel starts listening
again to incoming messages. For the sake of simplicity, we
will assume that the termination condition to the listening
phase is based on the number of messages received,say
M . When any aMussel receives M number of messages,
the aMussel will trigger the rest of the swarms transition
out of the listening phase into the “flood” state. For all
experiments in this paper, M is taken to be 100 messages
about the least explored patch. This state is called the
“flood” state. In the “flood” state the aMussels floods the
rest of the swarm with randomly chosen messages from
its database. Flooding the swarm continues for a certain
number of cycles, say F and then each agent transitions
into the “calculate movement” state where it decides to
move to a location based on its internal list of messages.
As time passes, the internal database of aMussels will
have a list of interesting locations suggested by the aFish.
The aMussels cluster this data and produce a reduced
number of location suggestions and performs a roulette
wheel selection based on the quality values of candidate
solution to choose one location. Thus, each aMussel will
have one goal after the selection process. Subsequently, the
aMussel transition into the “move” state in which the ac-
tual movement is executed. In the real world experiments,
aPad will transport the aMussels from point A to point B.
However, for the sake of simplicity, we will assume that the
aMussels can move from point A to point B. The decision
on which location to move is an individual decision which
emerges into an adequately coherent collective decision on
a swarm level.

aFish behaviour The main task of the aFish is to explore
the area and identify areas which might be interesting
for the rest of the swarm. This is quite similar to what
bees do when they scout to find sources of pollen and
nectar. Taking inspiration from bees, aFish will move
around randomly by default looking for interesting areas
as well as for aMussels. As shown in Figure 3, this state
is called “Scouting”. For the sake of simplicity, we assume
that aFish are able to detect interesting areas when they
move “interesting” patches in the simulation environment.
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Fig. 3. State transition diagram of aFish are shown in the
diagram

.

If an aFish encounters an interesting patch, it transitions
into the “inspect source” state and records the location
and quality of the patch. If an aFish already knows the
position of an aMussel, it moves towards the aMussel
directly to report the finding in the “Go Home” state.
Otherwise, the aFish resumes the “scouting” state to find
an aMussel to report the found location. Once an aMussel
is found the aFish reports the interesting patch and also
receives a suggestion from the aMussel as to which patch
to explore next. If coordinates of a particular source is
received from the aMussel, the aFish goes to inspect the
source in the “go to source” state. Such a bi-directional
transfer of information is inspired by the bee hive in the
manner how the bees even while bringing back waggle
dances, receive information from the hive and the collective
super organism is able to identify better food sources
by performing better waggle dances. In case of aFish, a
coordinate of an interesting patch to explore is passed on
to the aFish by the aMussel swarm.

Performance Evaluation In Section 1, the main ques-
tions that the authors seek to answer through this model
are stated. Several simulation experiments were conducted
to answer these questions. For each run, randomly gen-
erated obstacles and interesting areas spread across the
arena are used. In order to evaluate the system in the light
of the questions, the following performance parameters
have been defined:

(1) Time performance(τ): In order to check the feasibility
of the system with respect to time taken to explore
the area under consideration, we measure the sim-
ulation time taken till the last aMussel leaves the
instantiation patch. In order to evaluate the time
performance of the exploratory system, a total of
250 runs were conducted and at the end of each run
(once the aMussels reach their destination patches to
explore), the time taken for the last aMussel to leave
the instantiation patch was measured. All runs were
conducted using 100 aMussels and 20 aFish.

(2) Error in split(E): The error value between the ex-
pected number of aMussels in each group and the
actual number of aMussels in each group. The ex-
pected number of aMussels in each group will be

calculated according to the quality of the interesting
area. Let P be the total number of aMussels available
for exploration, qi be the quality of the interesting site
i, Nip be the number of interesting sites and ai be
the number of aMussels which actually went to site
i. Then, Equation 2 describes the error in split E of
aMussels based on the decentralized algorithm pro-
posed. Error in split, E, was evaluated by conducting
50 runs each with the number of aMussels varying
from 1 to 100.

(3) Resilience: In order to test the resilience of the ex-
ploratory system we introduce probability of failure
(each tick in the simulation) to the aMussels while
the aFish scout the arenas. At the end of run, we
measured the percentage of aMussels that failed and
the error split as per Equation 2. The resilience of
the system was evaluated by running an experiment
similar to the “Error in split”. Here, 50 runs each were
conducted for each probability of failure of aMussels.

Q =

Nip∑
i=1

qi where i ∈ N (1)

E =
1

P

Nip∑
i=1

| Pqi
Q

− ai | where i ∈ N (2)

Fig. 4. Histogram shows the time performance of the
system with three interest points, 100 aMussels and
20 aFish.

3. RESULTS

From Figure 4, we can see that the time performance of
the system ranges from 4 to 32 hours depending on the
difficulty of the region to be explored. However, most of
the runs with the area of 100 square meters lies requires
10 - 14 hours to explore.

Figure 5 shows how the exploratory system designed in this
paper performs with respect to the assignment of aMussels
according to quality of patches to be explored. Here, we
see that the error in split (E) decreases with the increasing
number of aMussels.

Figure 6 shows the result of the resilience test conducted
according to the performance measure introduced in the
Section 2. The figure shows how the error in split, E varies
with aMussel failure during simulation runs. In order to
represent how many aMussel failed during the runs, the
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arena are used. In order to evaluate the system in the light
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instantiation patch. In order to evaluate the time
performance of the exploratory system, a total of
250 runs were conducted and at the end of each run
(once the aMussels reach their destination patches to
explore), the time taken for the last aMussel to leave
the instantiation patch was measured. All runs were
conducted using 100 aMussels and 20 aFish.

(2) Error in split(E): The error value between the ex-
pected number of aMussels in each group and the
actual number of aMussels in each group. The ex-
pected number of aMussels in each group will be

calculated according to the quality of the interesting
area. Let P be the total number of aMussels available
for exploration, qi be the quality of the interesting site
i, Nip be the number of interesting sites and ai be
the number of aMussels which actually went to site
i. Then, Equation 2 describes the error in split E of
aMussels based on the decentralized algorithm pro-
posed. Error in split, E, was evaluated by conducting
50 runs each with the number of aMussels varying
from 1 to 100.

(3) Resilience: In order to test the resilience of the ex-
ploratory system we introduce probability of failure
(each tick in the simulation) to the aMussels while
the aFish scout the arenas. At the end of run, we
measured the percentage of aMussels that failed and
the error split as per Equation 2. The resilience of
the system was evaluated by running an experiment
similar to the “Error in split”. Here, 50 runs each were
conducted for each probability of failure of aMussels.
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Fig. 4. Histogram shows the time performance of the
system with three interest points, 100 aMussels and
20 aFish.

3. RESULTS

From Figure 4, we can see that the time performance of
the system ranges from 4 to 32 hours depending on the
difficulty of the region to be explored. However, most of
the runs with the area of 100 square meters lies requires
10 - 14 hours to explore.

Figure 5 shows how the exploratory system designed in this
paper performs with respect to the assignment of aMussels
according to quality of patches to be explored. Here, we
see that the error in split (E) decreases with the increasing
number of aMussels.

Figure 6 shows the result of the resilience test conducted
according to the performance measure introduced in the
Section 2. The figure shows how the error in split, E varies
with aMussel failure during simulation runs. In order to
represent how many aMussel failed during the runs, the
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Fig. 5. Box plot showing the error in aMussel assignment calculated according to Equations 1 and 2. The plot shows
that a larger the number of aMussels, smaller the error in assignment becomes.

Fig. 6. Box plot showing how the error in split performs
as the probability of aMussel failure increases. 50
runs were conducted per failure probability of failure
and the overlaid plot (in blue) shows the fraction
of aMussel that failed during the run time of the
simulation.

plot showing the mean of the fraction of aMussels failed
during each of the 50 runs is overlaid on the box plot.
Runs were terminated and runs were discarded if the
number of aMussels fell below 3 since the goal cannot be
accomplished with a lower than three aMussels.

4. DISCUSSION

From Figure 4, it is evident that the run time of the
system is most likely between 10 - 14 hours for every
hectare of underwater area. Since the subCULTron system
aims to explore underwater areas with several weeks of
operation time (Thenius et al., 2016), the time taken for
exploration is well within the physical operating limits of
aFish and aMussel robots (Thenius et al., 2016). Thus
the first question asked in Section 1 is answered with
Figure 4. The time performance of the system is expected
to be influenced by the number of aFish as well as the
termination condition chosen for the aMussels before the
“flood” state. Here, the termination condition is when an

aMussel has 100 messages about the least reported point
in its database.

Figure 5 shows how well the completely de-central deci-
sion to split individual aMussels performs with increasing
number of aMussels. It is seen that the error is higher
when the number of aMussels are low. As the number of
aMussels decreases, the error in the assignment of aMussels
(according to the patch quality) decreases. Theoretically,
the error should tend to zero as the number of aMussels
becomes large. Although such an observation speaks for
using as many aMussels as possible, considering the cost
of robots, a trade off between decreasing error and cost
can be chosen. Additionally, this observation is extremely
relevant for systems like subCULTron which operates with-
out a central controller for assigning robots to different
locations. Intuitively the error is also affected by how well
the individual databases match with each other. This in
turn is dependent on various factors like connectivity of the
aMussels on the instantiation patch. In the simulation, we
have assumed that all messages sent from any agent to an-
other agent is reliably transmitted and received. In reality,
there might be deviations from this assumption, however,
Varughese et al. (2017) has shown that slime mould based
behaviours are by nature shows higher resilience against
communication failures. Additionally, the condition which
waits for 100 data points per interesting location ensures
sufficient time for the aFish to compensate for any such
mishaps in communication.

The resilience of the system is shown by Figure 6. From
the overlaid line plot, we see the the fraction of aMussels
that failed during the simulation. It can be seen that
even with around 50 % of the aMussels failing during the
experiment, the system works but with larger errors in
aMussel assignment. From Figure 6, the resilience of the
system is sufficiently large to ensure that even as high as
10 % robots fail, the exploration system will still be able
to split into groups proportional to the quality of patches.
From the box plot, in case of 10 % aMussels fail, the error
in aMussel assignment as per Equation 2 will be below
0.05. In case of aFish failure, we can intuitively predict
that the exploration will be slower and hence the time
performance will suffer without any effect on the E.

Proceedings of the 9th MATHMOD
Vienna, Austria, February 21-23, 2018

5



390	 Joshua Cherian Varughese  et al. / IFAC PapersOnLine 51-2 (2018) 385–390

5. CONCLUSION AND FUTURE WORK

In Section 1, three questions that were asked which were
to be answered by the model designed in this paper. From
Figures 4, it was discussed that the time performance
of the system is on average 10-14 hours but it is also
dependent on the difficulty of the patches to be discovered.

The performance of the system is measured by the “Error
in split (E)” of the aMussels as described in Section 2.
From the discussion in Section 4, it is clear that for mini-
mizing E, it is better to use as many aMussels as possible.
Based on the model presented here, an appropriate number
of aMussels can be chosen according to the application
are considering error in split E, the minimum number of
parallel data collection nodes required and additionally,
the cost of individual robots.

As far as the resilience of the exploration system is
concerned, the error in split, E, is very small for realistic
probabilities of failures. Additionally, in spite of having
unrealistically large amount of robots failing (as high as
50%) per run, the system is able to achieve its exploration
goals. However, such runs have very high error in split, E
as shown in Figure 6.

Presently, there exists hardly any technology that simul-
taneously draws from various swarm intelligent sources to
accomplish an integrated system. The usual swarm intel-
ligence research is limited to systems performing certain
simple tasks. Although swarm intelligence is hardly im-
plemented in real world systems, research done in project
subCULTron is one of the first to integrate swarm intelli-
gence from various sources into one single system. In the
future, in addition to the already suggested behaviours,
more bio-inspiration can be added to various aspects of
the model.

Another scope for future work is that, currently the ex-
ploration runs are terminated when the aMussels split
into groups to explore the areas of interest. The suggested
exploration system can be extended to accommodate with
dynamic new areas of interest that the aFish keep report-
ing to the aMussels even while they continue to move to
explore.
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