
9/13/20

1

Monte	Carlo	Tree	
Search
MICHAEL	WOLLOWSKI

COMPILED	FROM	THE	FOLLOWING	RESOURCES:

HTTPS://EN.WIKIPEDIA.ORG/WIKI/MONTE_CARLO_TREE_SEARCH

MONTE-CARLO	TREE	SEARCH:	A	NEW	FRAMEWORK	FOR	GAME	AI

Introduction
Monte	Carlo	tree	search (MCTS)	is	a heuristic search	algorithm

Used	in	in	game	play.	
◦ MCTS	was	introduced	in	2006	for computer	Go
◦ Used	in	board	games	like chess and shogi
◦ Used	in	games	with	incomplete	information	such	as bridge and poker
◦ Used	in	real-time	video	games	such	as Total	War:	Rome	II's	implementation	of	
the	high	level	campaign	AI.



9/13/20

2

Principle	of	Operation
The	focus	of	MCTS	is	on	the	analysis	of	the	most	promising	moves.

It	expands	the search	tree based	on random	sampling of	the	search	space.	

The	application	of	Monte	Carlo	tree	search	in	games	is	based	on	
many playouts also	called roll-outs.	

In	each	playout,	the	game	is	played	out	to	the	very	end	by	selecting	moves	at	
random.	

The	final	game	result	of	each	playout	is	then	used	to	weight	the	nodes	in	the	
game	tree	so	that	better	nodes	are	more	likely	to	be	chosen	in	future	playouts.

Principle	of	Operation
The	most	basic	way	to	use	playouts	is	to	apply	the	same	number	of	playouts	
after	each	legal	move	of	the	current	player,	then	choose	the	move	which	led	to	
the	most	victories.

The	efficiency	of	this	method—called Pure	Monte	Carlo	Game	Search—often	
increases	with	time	as	more	playouts	are	assigned	to	the	moves	that	have	
frequently	resulted	in	the	current	player's	victory	according	to	previous	
playouts.	



9/13/20

3

Principle	of	Operation
Each	round	of	
Monte	Carlo	
tree	search	
consists	of	
four	steps:

Selection
A	selection	function	is	applied	recursively	
until	a	leaf	node	is	reached.

The	function	attempts	to	balance	
exploitation	and	exploration.

Exploitation:	Select	moves	that	lead	to	the	
best	results	so	far

Exploration:	Select	less	promising	moves	to	
remove	uncertainty	of	them.



9/13/20

4

Expansion
One	or	more	moves/states	are	created.

Simulation
One	simulation	game	is	played.

Actions	are	selected	at	random	until	
game	ends.

Use	heuristic	knowledge	to	bias	selection	
to	actions	that	look	more	promising.



9/13/20

5

Backpropagation
After	reaching	the	end	of	the	
simulated	game,	update	each	tree	
node	that	was	traversed	during	that	
game.	

The	visit	counts	are	increased	and	the	
win/loss	ratio	is	modified	according	to	
the	outcome.	

Backpropagation
Each	node	shows	the	ratio	of	wins	to	
total	playouts	from	that	point	in	the	
game	tree	for	the	player	that	node	
represents.
Black	is	about	to	move.	
The	root	node	shows	there	are	11	wins	
out	of	21	playouts	for	white	from	this	
position	so	far.	
It	complements	the	total	of	10/21	black	
wins	shown	along	the	three	black	nodes	
under	it,	each	of	which	represents	a	
possible	black	move.



9/13/20

6

Backpropagation
All	nodes	along	selection	path	increase	
their	simulation	count	(denominator)
If	black	wins,	increment	the	win	counts	
of	all	black	nodes	along	the	selection	
path	(numerator)
If	white	wins,	increment	the	win	counts	
of	all	white	nodes
Rounds	of	search	are	repeated	as	long	as	
the	time	allotted	to	a	move	remains.	
The	move	with	the	most	simulations	
made	(i.e.	the	highest	denominator)	is	
chosen	as	the	final	answer.

Putting	it	all	together


