
9/17/20

1

Feed-forward	
Neural	Networks
MICHAEL	WOLLOWSKI

Introduction
Last	time,	we	studied	perceptrons.

They	are	single	layer	feed-forward	networks.

They	work	well	for	domains	which	can	be	linearly	separated

An	example	for	which	they	do	not	work	is	the	Boolean	XOR	function.

In	this	presentation,	we	will	study	multi-layer	feed-forward	networks.	

Most	of	the	concepts	are	the	same	as	for	perceptrons.

A	key	difference	is	in	the	way	in	which	we	determine	errors	in	the	non-output	
layers



9/17/20

2

Architecture
Here	is	the	architecture	of	a	basic	feed-forward	network.

Russell	and	Norvig:	AIMA,	2nd Ed.	p	745

Architecture
As	with	perceptrons,	it	consists	of:
◦ input	units
◦ an	output	unit
◦ we	may	have	more	than	one	output	
unit.

◦ weights	between	units
Additionally,	there	are	hidden	units.	
We	now	have	a	weight	matrix.
It	contains	the	“knowledge”	of	the	NN
The	weight	matrix	changes	as	a	result	of	
training

Russell	and	Norvig:	AIMA,	2nd Ed.	p	745



9/17/20

3

XOR
Let’s	revisit	XOR	and	how	one	might	design	
a	NN	that	solves	it

XOR	Solution

Figure	source:	Jurafsky and	Martin,	Speech	and	Language	Processing,	3rd Ed.



9/17/20

4

XOR	Solution

Figure	source:	Jurafsky and	Martin,	Speech	and	Language	Processing,	3rd Ed.

The	bias	“nodes”	can	be	used	to	adjust	the	threshold	of	activation	functions.

We	can	safely	ignore	their	role.
Please	complete	the	XOR	exercise	
posted	on	our	website	and	come	
back	when	finished.	

XOR	Solution

Figure	source:	Jurafsky and	Martin,	Speech	and	Language	Processing,	3rd Ed.

Let’s	have	a	look	at	what	hidden	
layers	do	for	us.

Consider	the	two	figures.

The	one	on	the	left	shows	the	
value	space	of	the	original	XOR	
problem.	

The	one	on	the	right	shows	how	
the	hidden	layer	produces	a	value	
space	that	is	linearly	separable.	



9/17/20

5

Calculating	Error
The	XOR	solution	from	the	prior	slides	was	designed	by	humans.

We	now	want	to	study	the	training	algorithm	for	feedforward	networks.

A	key	aspect	of	that	algorithm	is	to	determine	the	error	of	each	unit

Russell	and	Norvig:	AIMA,	2nd Ed.	p	745

Calculating	Error
The	calculation	of	the	error	of	an	output	unit	
remains	as	for	perceptrons.

It	is	desired	output	– actual	output.

The	challenge	is	to	determine	the	error	for	
the	hidden	units.

Basically,	we	will	ascertain	how	much	a	
hidden	unit	contributes	to	the	error	of	the	
units	it	feeds	into.	

Russell	and	Norvig:	AIMA,	2nd Ed.	p	745



9/17/20

6

Calculating	Error	of	Hidden	Layer	Nodes
Let’s	focus	on	node	3	of	the	
hidden	layer	of	network	on	the	
right.

Suppose	we	already	calculated	the	
error	of	each	of	the	four	output	
units.

Node	3	sends	its	output	to	all	four	
nodes	of	the	output	layer.

As	such,	we	say	that	it	contributes	
to	any	error	of	those	four	output	
units.

Calculating	Error	of	Hidden	Layer	Nodes
In	order	to	determine	the	
magnitude	of	node	3’s	
contribution	to	the	errors,	we	
consider	the	weights.

The	error	of	the	shaded	unit	3	is	
then	the	weighted	sum	of	the	
errors	of	units	1-4	of	the	output	
layer.

S i:1..n	W3i	Errori



9/17/20

7

Backpropagation	Learning	Algorithm
Just	as	with	perceptrons,	there	are	two	stages:

1. We	run	the	network	on	an	input	to	produce	an	output.

2. We	calculate	errors	of	the	units	and	adjust	weights.

Notice	that	the	error	is	calculated	backwards,	from	the	output	layer	through	the	
hidden	layer.

Hence	“back”propagation.

Backpropagation	Learning	Algorithm
Let’s	have	a	look	at	the	first	portion,	in	which	we	run	the	network	on	a	given	input.		
M is	the	number	of	layers.

The	input	layer	is	layer	1.

As	you	can	see,	for	each	unit	at	a	given	layer,	the	algorithm	
◦ calculates	the	input
◦ Using	the	activation	function,	
it	calculate	the	output.

It	does	this	for	all	layers.

Typically,	FFNs	use	sigmoid	functions

Figure	source:	Russell	and	Norvig:	AIMA,	2nd Ed.	p	746



9/17/20

8

Backpropagation	Learning	Algorithm
Let’s	have	a	look	at	the	backpropagation	portion,	in	which	we	adjust	the	weights.
In	order	to	adjust	the	weights,	we	need	to	know	the	error.

The	algorithm	first	calculates	the	errors	of	the	output	layer	by	subtracting	the	output	from	the	
desired	output	value.	
Since	the	activation	function	is	differentiable,	the
difference	is	multiplied	with	the	derivative	of
the	function	value,	i.e.	the	slope	of	the	activation.
The	algorithm	then	calculates	the	error	of	the	
hidden	layers	j.
Next	the	algorithm	adjusts	the	weights	for	the	
prior	layer	i.

Figure	source:	Russell	and	Norvig:	AIMA,	2nd Ed.	p	746

Backpropagation	Learning	Algorithm
Here	is	the	complete	algorithm.
If	you	rather	much	see	the	algorithm
in	code,	here	is	a	link	to	an	annotated
Java	implementation	of	it.	

Figure	source:	Russell	and	Norvig:	AIMA,	2nd Ed.	p	746



9/17/20

9

Loss	Functions	and	Gradient	Descent
When	talking	about	NN,	we	need	to	understand	two	terms:	

1. Loss	functions	and

2. Gradient	descent

There	are	many	loss	functions,	see	the	Wikipedia	entry	on	Loss	Functions.

Ours	is	very	simple,	just	the	sum	of	the	differences	between	desired	and	actual	output.

Here	are	some	common	loss	functions	used	in	Deep	Learning.

We	wish	to	reduce	the	error	or	minimize	the	loss	function.

Finding	the	Min	of	a	Loss	Function

Figure	source:	Jurafsky and	Martin,	Speech	and	Language	Processing,	3rd Ed.

Gradient	descent	is	an	iterative	optimization	algorithm	for	finding	a	local	minimum	in	a	
differentiable	function.



9/17/20

10

Nettalk
Minksy and	Papert’s book	Perceptrons,	published	in	1969	had	the	effect	of	
bringing	research	into	NN	to	a	standstill.

In	the	80s,	some	researchers	showed	renewed	interest	in	NN.

Sejnowski and	Rosenberg	developed	a	system	that	could	learn	to	read	out	aloud.

Their	system	was	very	successful,	turned	a	lot	of	heads	and	jumpstarted	
research	into	NN.

Incidentally,	Convolutional	Neural	Networks	(CNN)	were	developed	in	the	late	
80s.

Nettalk
Nettalk was	trained	on	English	text	at	the	
input	units	and	phonemes,	i.e.	ways	of	
sounding	characters	of	text	at	the	output

The	input	text	was	presented	on	a	sliding	
window	of	7	characters

There	were	7	groups	of	29	units	at	the	input	
layer.

The	hidden	layer	consisted	of	80	units

The	output	layer	consisted	of	26	units.

The	network	was	fully	connected.

They	used	bias	inputs	to	each	unit.	

Figure	source: Sejnowski and	Rosenberg	NETtalk:	a	parallel	network	that	learns	to	read	aloud	,	Figure	2



9/17/20

11

Nettalk
Please	watch	the	brief	excerpt	from	the	audio	recordings	of	the	network	at	
different	stages	of	processing.

As	you	could	see	from	the	recording,	NN	need	to	be	trained	a	lot.	

As	training	data,	Sejnowski and	Rosenberg	picked:
◦ phonetic	transcriptions	from	informal,	continuous	speech	of	a	child	and	
◦ a	20,012	word	corpus	from	a	dictionary.	A	subset	of	1000	words	was	chosen	
from	this	dictionary	taken	from	the	Brown	corpus	of	the	most	common	words	
in	English.

As	we	will	see	during	the	next	week,	NN	are	like	sponges,	they	absorb	
information,	or	patterns	in	the	training	data.


