
9/17/20

1

Neural	Networks
MICHAEL	WOLLOWSKI

Introduction
Neural	networks	(NN)	or	more	
accurate	Artificial	Neural	Networks	
(ANN)	are	software	systems	that	
are	modelled	on	a	brain’s	hardware.

Key	element	of	a	brain	are:
◦ Cells	and
◦ Synapses,	which	connect	cells

Russell	and	Norvig:	AIMA,	1st Ed.	Figure	19.1



9/17/20

2

Introduction
Mimicking	NN,	ANN	consists	of:
◦ Units
◦ Connections	between	units

Russell	and	Norvig:	AIMA,	1st Ed.	Figure	19.4

Units
A	unit	consists	of	three	parts:
1. An	input	function
2. An	activation	function
3. Output

Russell	and	Norvig:	AIMA,	1st Ed.	Figure	19.4



9/17/20

3

Input	Function
The	input	function	simply	sums	each	of	the	input	values,	multiplied	by	a	weight	
associated	with	that	input.
The	inputs	are	either:
◦ Inputs	to	the	NN
◦ Outputs	from	prior	layers
The	weights	will	be	adjusted
during	training.
The	weight	matrix	contains
what	might	be	called	the	
knowledge	of	the	NN

Russell	and	Norvig:	AIMA,	1st Ed.	Figure	19.4

Activation	Function	and	Output
There	are	several	activation	functions:
◦ Step
◦ Sign
◦ Sigmoid
◦ tanh and
◦ ReLu

An	activation	function	takes	the	input	from	the	input	function	and	
produces	the	output	value	of	the	current	unit.
The	output	is	typically	placed	into	vectors.	
There	is	nothing	exciting	about	the	“Output”	component	of	a	unit.



9/17/20

4

Step	Activation	Function
The	step	activation	function	has	two	output	values:	0	and	1.
It	produces	an	output	of	1,	if	the	input	value	is
above	above	a	certain	threshold,	t.
We	will	use	this	activation	function	to	learn	the
basics	of	NN.
I	do	not	think	they	are	used	in	modern	NN

Russell	and	Norvig:	AIMA,	1st Ed.,	Figure	19.5

Sign	Activation	Function
The	sign	activation	function	has	two	output	values:	-1	and	1.
It	produces	an	output	of	1,	if	the	input	value	is
above	above	0.
I	do	not	think	they	are	used	in	modern	NN

Russell	and	Norvig:	AIMA,	1st Ed.,	Figure	19.5



9/17/20

5

Sigmoid	Activation	Function
The	sigmoid	activation	function	returns	a	value	in	the	range	of	0	to	1	with	a	
smooth	transition.
The	steepness	of	the	curve
and	the	location	of	the	half-
way	mark	can	be	adjusted	with
parameters.
This	function	is	the	workhorse
of	ANN

Image	source:	Jurafsky and	Martin:	Speech	and	Language	Processing,	3rd Ed.,	Chpt.	7

tanh Activation	Function
The	tanh activation	function	is	used	in	CNNs	and	RNNs.
It	serves	to	normalize	an	input	value
into	the	range	of	-1	to	1.	

Image	source:	Jurafsky and	Martin:	Speech	and	Language	Processing,	3rd Ed.,	Chpt.	7



9/17/20

6

ReLU Activation	Function
The	ReLU activation	function	converts	negative	inputs	to	0	but	keeps	the	
positive	inputs	unmodified.
This	function	is	used	in	CNNs,	among
others	to	add	some	non-linearity.

Non-linearity	helps	with	training	NN.

Image	source:	Jurafsky and	Martin:	Speech	and	Language	Processing,	3rd Ed.,	Chpt.	7

Computational	Power	of	NN
One	of	the	first	things	researchers	were	concerned	about	after	developing	NN	is	
whether	NNs	can	compute	anything	a	digital	computer	can	compute.

Researchers	were	wondering	whether	NN	can	compute	the	Boolean	functions	
and,	or and	not.	

As	you	know	from	your	hardware	courses,	we	can	build	a	computer	from	NAND	
or	NOR	gates.

As	such,	if	a	NN	can	implement	and,	or and	not,	we	could	simulate	a	digital	
computer	through	a	NN,	just	don’t	try	this	at	home.



9/17/20

7

Computational	Power	of	NN
Below	are	NN	units	that,	using	step	activation	functions	compute	the	Boolean	
functions	and,	or and	not.	

Perceptron
Perceptrons were	one	of	the	first	NN	
architectures	studied.

They	are	single	layer	NN.

They	consist	of	an	input	layer	and	an	output	
layer

The	input	layer	is	simply	a	vector	of	inputs

The	output	layer	consists	of	the	NN	units	
which	calculate	an	output.

Figure	source:	Russell	and	Norvig:	AIMA,	1st Ed.	Figure	19.8



9/17/20

8

Perceptron	Learning
As	you	can	tell	from	the	architecture	of	a	perceptron,	the	only	items	that	can	
change	are	the	weights.

As	mentioned	before,	the	weight	matrix	encodes	the	“knowledge”	of	a	NN.

Learning	in	NN	is	expensive.

In	case	you	are	wondering,	learning	in	humans	is	expensive	too.

In	ANN,	we	use	training	data	to	repeatedly	adjust	the	weights	until	some	
stopping	criterion	is	satisfied.

Perceptron	Learning
A	perceptron	is	considered	a	single-layer	feed-forward	network.
The	learning	algorithm	needs	input	vectors	of	data	and	desired	output	values	for	each	
output.

Let’s	assume	a	perceptron,	in	other	words	a	network	with	just	one	output	node.
Let	n be	the	number	of	input	units.

Let	x	=	x1,	…,	xn be	a	set	of	input	values.

Let	y be	the	output

Let	Wj,	j	=	0	… n be	the	weights	
Let	g be	the	activation	function.	



9/17/20

9

Perceptron	Learning
1. The	learning	algorithm	picks	an	input	e from	examples,	the	set	of	input	

vectors.
2. The	algorithms	calculates	in,	the	input	to	the	single	neuron,	the	output	unit.	

The	input	is	the	weighted	sum	of	all	the	inputs.
3. The	algorithm	then	calculates	the	Error.

The	error	is	the	difference	between	the
desired	output	y associated	with	e and	the
actual	output	as	computed	by	the	activation	
function.	
The	error	can	be	positive	or	negative

Perceptron	Learning
4. Next	comes	the	adjustment	of	the	weights.

This	is	where	learning	happens.

There	are	three	components	to	the	adjustment	made	to	the	weights.
1)		a is	the	learning	rate.	

A	typical	value	is	0.05
It	determines	how	quickly	a	network	converges

2)	Error	was	calculated	in	step	(3)
Notice	that	if	the	error	is	negative,	then	the	entire	
term	is	negative
The	effect	of	a	negative	term	is	that	the	weight	will	decrease.

3)		xj,	the	value	of	this	particular	input.
If	the	value	is	high,	then	it	must	be	important	and
there	is	a	larger	adjustment	to	the	weight.



9/17/20

10

Perceptron	Learning
5. Finally,	there	is	the	stopping	criteria.	

There	are	basically	two	options:

1)	Terminate	after	a	set	number	of	iterations.
2)	Terminate	when	the	overall	error	falls

below	a	certain	threshold.
We	will	explore	both	of	them

Perceptron	Learning
If	the	network	has	a	differentiable	activation	function,	then	we	add	g’(in)	to	the	to	the	
weight	update	calculation.

Suppose	we	have	a	sigmoid	activation	function.

When	g	outputs		½,	then	the	differentiated	value	is	1.

When	g	outputs	0	or	1	then	the	differentiated	value	is	0.

Using	g’(in)	modifies	the	weights	so	that	the

output	moves	away	from	the	center	of	the	range	to	

the	edges,	i.e.	0	or	1.



9/17/20

11

Linear	Separability,	AND
Look	at	the	following	graph	of	AND.

I1 and	I2 represent	the	two	inputs	to	AND

The	hollow	circles	represent	the	value	0	of	

AND	on	the	inputs	of	0	and	1.

The	filled	in	circles	represent	a	value	of	1.

The	dashed	line	represents	the	fact	that	we

can	separate	the	four	different	outputs	of

AND	into	two	separate	regions.

Linear	Separability,	OR
Look	at	the	following	graph	of	OR.

We	again	see	ways	of	linearly	separating	
the	different	outputs	of	OR.



9/17/20

12

XOR
Look	at	the	following	graph	for	XOR.

There	is	no	way	to	linearly	separate	the

two	classes	of	outputs.

We	would	need	to	draw	a	ridge.	

Perceptrons,	or	single	layer	feed-forward	
networks	cannot	learn	the	XOR	functions.

To	learn	XOR,	we	need	a	feed-forward	network	
with	two	layers,	and	output	and	a	hidden	layer.	

We	will	cover	them	next.


