11/2/20

Q-Learning

MICHAEL WOLLOWSKI

Introduction

In Q-Learning, an agent tries to learn a policy from what it learned by
interacting with its environment.

So far, an agent learned policies before it even took a step.
Now, it will explore its world and as it does so, it will update its policy.
This is a form of temporal difference learning.

An agent learns an action-utility function, or Q-function.




11/2/20

Q-Learning

Initialize Q(s,a),Vs € 8,a € A(s), arbitrarily, and Q(terminal-state,-) =0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from Q (e.g., s-greedy)
Take action A, observe R, S’
Q(S, A) « Q(S.A) + a|R + ymax, Q(5'.a) — Q(S. A)]
S« S

until S is terminal

Figure 6.12: Q-learning: An off-policy TD control algorithm.

Exploration vs. Exploitation

Let f(u, n) be an exploration function.

It determines how greed (preference for high values of utility u) is traded off against
curiosity (preference for actions that have not been tried often and have a low

frequency count n.)

The function should be increasing in u and decreasing in n.

A simple definition is:
flu, n) =R, if n <N,
u otherwise
° R*is the expected reward.
> N, is a fixed parameter.




11/2/20

Q-Learning with Exploitation

function Q-LEARNING-AGENT(percept) returns an action
inputs: percept, a percept indicating the current state s’ and reward signal 7/
persistent: (), a table of action values indexed by state and action, initially zero
N4, a table of frequencies for state—action pairs, initially zero
s, a, T, the previous state, action, and reward, initially null

if TERMINAL?(s’) then Q[s’, None] < r’
if s is not null then
increment Ng,[s,al
Q[s,a]l — Q[s, a] + a(Nsa[s,a])(r + v max, Q[s',a'] — Q[s,a])
s,a,r ', argmax, f(Q[s',a'], Noa[s',a']), 7’
return a




