11/1/20

Policy Iteration

MICHAEL WOLLOWSKI

Policies, policies, policies

After the next session, we will have seen three different
ways to generated policies:

° Value Iteration: Recalculate utilities until no significant
changes, then “read off” optimal policy.

° Policy Iteration: Start with a random policy and improve it
until no changes.

o Q-Learning: Start with nothing and wing it.

11/1/20

Recap: Value lteration

In Value Iteration, we determine the values of each state
through an iterative process.

o We start with values zero for all states except for the
absorbing states.

> We iterate until no significant changes occur

o We return the utility matrix, containing the values for each
state.

Based on the utility matrix, we then determine an optimal
policy by:

° looking at all possible actions and

o Using the stochastic transition function

o Selecting the action that leads to he highest utility value

Policy Evaluation and Improvement

Policy Evaluation: Given a policy p, calculate U, = U™, the utility of each
state if 7; where to be executed.

Ui(s)= R(s)+ YZP(S,|S/TCi(S) YUi(s7)
SI

Policy Improvement: Calculate a new maximum expected policy 7,;,
using one-step look-ahead based on U;
if max LP(s’| s,a)U[s’]> YP(s’| s, m[s])U[s"]

a€A(s) s’

thent[s] := argmax YP(s’|s,a)U[s’]

a€A(s) s’

11/1/20

Policy Iteration

function POLICY-ITERATION(mdp) returns a policy
inputs: mdp, an MDP with states 5, actions A(s), transition model P(¢’ | s, a)
local variables: U, a vector of ulilities for states in S, initially zero
, a policy vector indexed by state, initially random

repeat
U «+ POLICY-EVALUATION(7, U, mdp)
unchanged? «— true
for each state s in S do

if P(s YU P(s U[s'] then d
1;;1% 2 (s'|s,0) Uls'] Z "|s,m[s]) Uls'] then do

w[s] < argmax Z P(s'|s,a) U[s’]
a € A(s)
unchanged? — false
until unchanged?
return m

Class Exercise

Consider the following partial policy:

T +1

1 |Start

1 2 3 4
Assume that the values of the states are either -0.04 or as indicated.

Focus on state s = <3, 3> and calculate utility as well as the new policy
for one iteration.

Assume y to be 0.9.

