Optimal Policies Value Iteration

MICHAEL WOLLOWSKI

Grid World

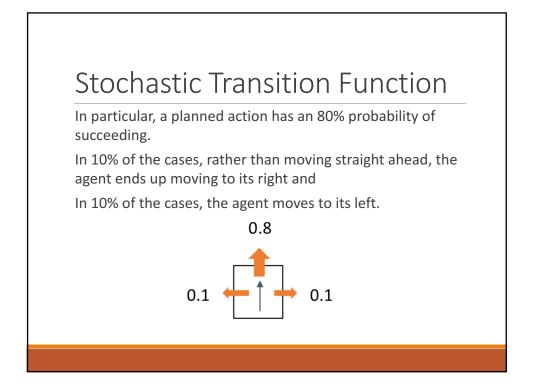
We already introduced the simple world that our agent is to explore.

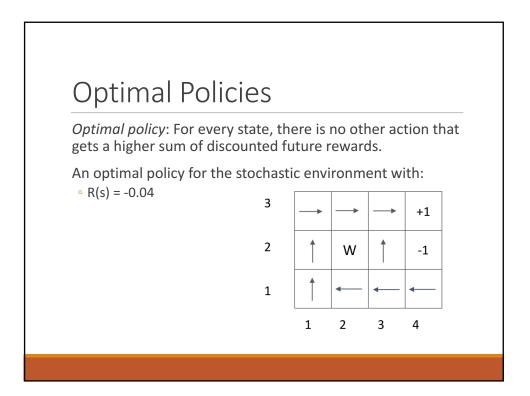
Let's add a kink into our simple world.

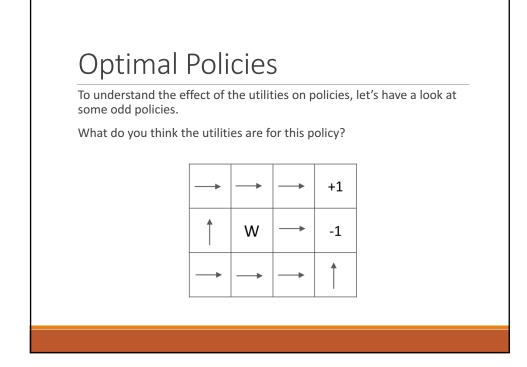
Suppose actions do not always go as planned.

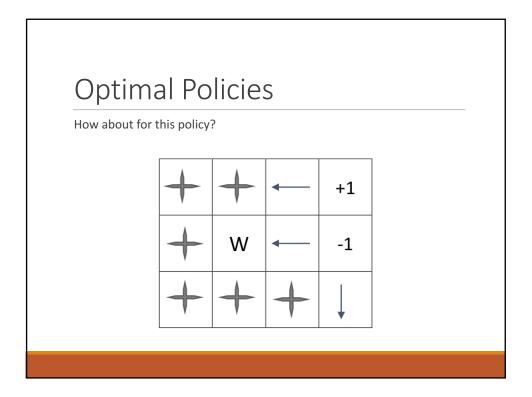
In technical terms, we move to a stochastic transition model.

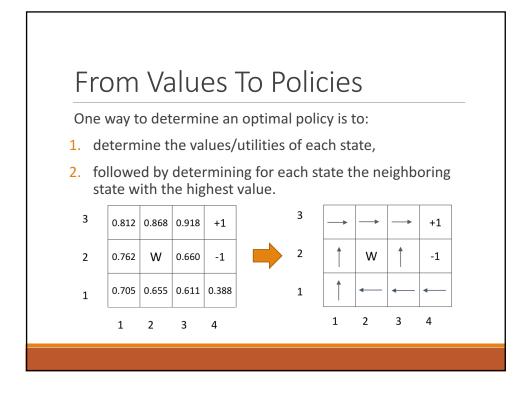
3				+1	
2		W		-1	
1	Start				
	1	2	3	4	

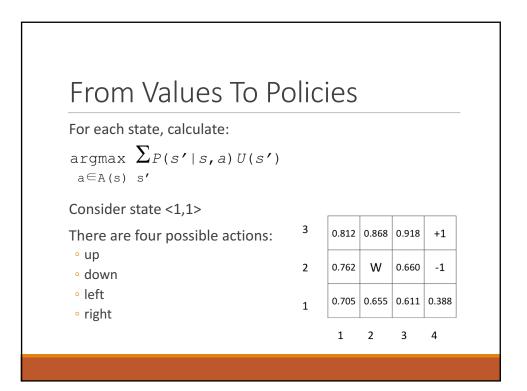


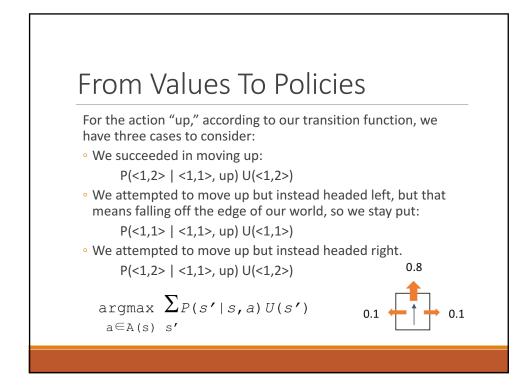


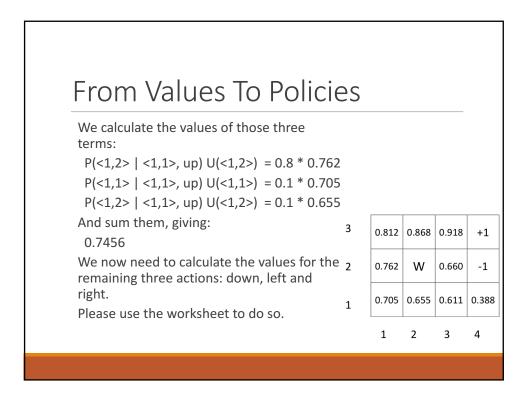












From Values To Policies

Based on the value we calculate and the data from your worksheet, we should have:

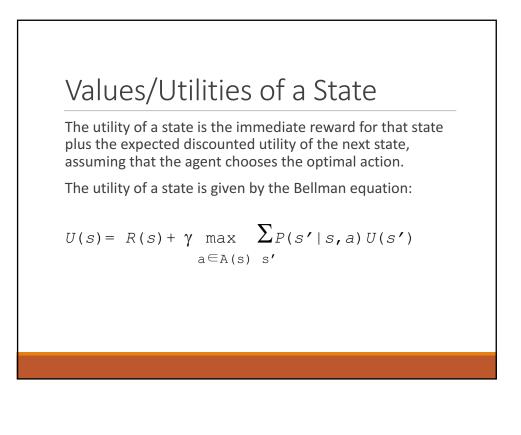
° up:	0.7456
• down:	0.697
1.0	0 74 07

• left: 0.7107

• right: 0.6707

Based on the formula, we select the action up, since it leads us in the direction of the highest reward in the end.

$$\underset{a \in A(s)}{\operatorname{argmax}} \sum_{s'} P(s' \mid s, a) U(s')$$



Notice the similarities to the function with which we calculate a policy.

Here, we do not take the action that lead to the max, but instead the value of the max.

We multiply the value with a tuning factor g that determines the degree to which we favor the immediate reward over later rewards.

We will explore the tuning factor later.

$$U(s) = R(s) + \gamma \max_{a \in A(s)} \sum P(s' | s, a) U(s')$$

