
4/22/24

1

A	Path	Towards	Autonomous	
Machine	Intelligence

Yann	LeCun
https://openreview.net/pdf?id=BZ5a1r-kVsf

Summary	by	Michael	Wollowski

About	this	Presentation

• It	summarizes,	without	much	comment	a	position	paper	by	Yann	
LeCun.
• He	states	that	it	is	“… a	position	paper	expressing	my	vision	for	a	path	
towards	intelligent	machines	that	learn	more	like	animals	and	
humans,	that	can	reason	and	plan,	and	whose	behavior	is	driven	by	
intrinsic	objectives,	rather	than	by	hard-wired	programs,	external	
supervision,	or	external	rewards.”



4/22/24

2

Scaling	Laws

• The	performance	of	large	language	models	has	shown	to	be	mainly	
determined	by	3	factors:	
• model	size	(the	number	of	parameters),
• dataset	size	(the	amount	of	training	data),	and	
• the	number	of	iterations	used	for	training.	

• We	can	improve	a	model	by	adding	parameters	(adding	more	layers	
or	having	wider	contexts	or	both),	by	training	on	more	data,	or	by	
training	for	more	iterations.	
• The	relationships	between	these	factors	and	performance	are	known	
as	scaling	laws.	
• LeCun believes	there	is	a	limit	to	what	can	be	achieved	by	scaling.

Sudden	Emergence	of	Capabilities

Source:	Anderljung et	al.	Frontier	AI	Regulation:	Managing	Emerging	Risks	to	Public	Safety



4/22/24

3

Acquisitions	of	Concepts	about	the	World

• Learning	from	the	
bottom-up

• Turing	(and	others)	
argued	for	that.

Acquisitions	of	Concepts	about	the	World

• Abstract	concepts,	such	as	gravity	and	
inertia,	are	acquired	on	top	of	less	
abstract	concepts,	such	as	object	
permanence.	

• Much	of	this	knowledge	is	acquired	
mostly	by	observation.

• Very	little	direct	intervention,	particularly	
in	the	first	few	weeks	and	months.	



4/22/24

4

System	Architecture

• The	components	and	structure	
of	the	proposed	approach.

• It	is	an	agent	architecture.

Figure	2.1	source:	Russell	and	Norvig.	AIMA.

System	Architecture

Configurator	module	takes	inputs	
(not	represented	for	clarity)	from	
all	other	modules	and	configures	
them	to	perform	the	task	at	hand.	
Perception	module	estimates	the	
current	state	of	the	world.
World	model	module	predicts	
possible	future	world	states	as	a	
function	of	imagined	actions	
sequences	proposed	by	the	actor.



4/22/24

5

System	Architecture

Cost	module	computes	a	single	scalar	
output	called	“energy”	that	measures	
the	level	of	discomfort	of	the	agent.	
It	is	composed	of	two	sub-modules,	the	
• intrinsic	cost,	which	is	immutable	and
• the	critic,	a	trainable	module	that	

predicts	future	values	of	the	intrinsic	
cost.

Short-term	memory	module keeps	track	
of	the	current	and	predicted	world	
states	and	associated	intrinsic	costs.

System	Architecture

Actor	module	computes	proposals	
for	action	sequences.	
World	model	and	the	critic	
compute	the	possible	resulting	
outcomes.	
The	actor	can	find	an	optimal	
action	sequence	that	minimizes	
the	estimated	future	cost,	and	
output	the	first	action	in	the	
optimal	sequence.



4/22/24

6

System-1	and	System-2	Thinking	

• Two	possible	modes	that	the	model	can	employ	for	a	perception-
action	episode.	

1. No	complex	reasoning.	Produces	an	action	directly	from	the	output	
of	the	perception	and	a	possible	short-term	memory	access.	
We	call	it	“Mode-1”,	by	analogy	with	Kahneman’s “System	1”.	

2.			Reasoning	and	planning	through	the	world	model	and	the	cost.	
We	call	it	“Mode-2”	by	analogy	to	Kahneman’s “System	2”.	

• We	use	the	term	“reasoning”	in	a	broad	sense	here	to	mean	
constraint	satisfaction	(or	energy	minimization).	

Mode-1	Perception-Action	Episode

• The	perception	module	
estimates	the	state	of	the	
world	s[0]	=	Enc*(x).	

• The	actor	directly	
computes	an	action,	or	a	
short	sequence	of	actions,	
through	a	policy	module	
a[0]	=	A(s[0]).

• This	reactive	process	does	not	make	use	of	the	world	model	nor	of	the	cost.	
• The	cost	module	computes	the	energy	of	the	initial	state	f[0]	=	C(s[0])	and	stores	the	
pairs	(s[0],	f[0])	in	the	short-term	memory.	

*)	Enc stands	for	Encoder



4/22/24

7

Mode-2	Perception-Action	Episode

• The	perception	module	estimates	the	state	of	the	world	s[0].	
• The	actor	proposes	a	sequence	of	actions	a[0],	a[1],	.	.	.	,	a[t],	a[t	+	1],	.	.	.	,	a[T].	
• The	world	model	recursively	predicts	an	estimate	of	the	world	state	sequence	using	

s[t	+	1]	=	Pred(s[t],	a[t]).	
• The	cost	C(s[t])	computes	an	energy	for	each	predicted	state	in	the	sequence,	the	

total	energy	being	the	sum	of	them.	

Mode-2	Perception-Action	Episode

• Through	an	optimization	or	search	procedure,	the	actor	infers	a	sequence	of	actions	
that	minimizes	the	total	energy.	

• It	then	sends	the	first	action	in	the	sequence	(or	the	first	few	actions)	to	the	effectors.	
• Since	the	cost	and	the	model	are	differentiable,	gradient-based	methods	can	be	used	

to	search	for	optimal	action	sequences.	
• Pairs	of	states	(computed	by	the	encoder	or	predicted	by	the	predictor)	and	

corresponding	energies	from	the	intrinsic	cost	and	the	trainable	critic	are	stored	in	the	
short-term	memory	for	subsequent	training	of	the	critic.	



4/22/24

8

Training	as	a	result	of	Mode-2	reasoning	

This	diagram	depicts	how	to	train	a	policy	module	A(s[t])	to	approximate	the	
action	that	results	from	Mode-2	optimization.	
The	system	first	operates	in	Mode-2	and	produces	an	optimal	sequence	of	
actions	(ǎ[0],	.	.	.	,	ǎ[T]).	

Training	as	a	result	of	Mode-2	reasoning	

Then	the	parameters	of	the	policy	module	are	adjusted	to	minimize	a	divergence	
D(ǎ[t]),	A(s[t]))	between	the	optimal	action	and	the	output	of	the	policy	module.	

The	policy	module	can	then	be	used	to	produce	actions	reactively	in	Mode-1,	or	
to	initialize	the	action	sequence	prior	to	Mode-2	inference	and	thereby	
accelerate	the	optimization.	



4/22/24

9

Architecture	of	Cost	Module

• The	cost	module	comprises	the:
• intrinsic	cost	module	which	is	immutable	ICi(s)	(left)	and
• the	critic	or	Trainable	Cost	TCj(s)	(right),	which	is	trainable.	

• Both	IC	and	TC	are	composed	of	multiple	submodules	whose	output	energies	
are	linearly	combined.	

Architecture	of	Cost	Module

• Each	submodule	imparts	a	particular	behavioral	drive	in	the	agent.	
• The	weights	in	the	linear	combination,	ui and	vj,	are	determined	by	the	configurator	

module	and	allow	the	agent	to	focus	on	different	subgoals at	different	times.	



4/22/24

10

Training	the	critic	

• During	planning	episodes,	the	intrinsic	cost	module	stores	triplets	(time,	state,	
intrinsic	energy):	(τ,	Sτ ,	IC(Sτ))	into	the	associative	short-term	memory.	

• During	critic	training	episodes,	the	critic	retrieves	a	past	state	vector	Sτ ,	together	
with	an	intrinsic	energy	at	a	later	time	IC(Sτ +δ).	

Training	the	critic	

• In	the	simplest	scenario,	the	critic	adjusts	its	parameters	to	minimize	a	divergence	
measure	between	the	target	IC(Sτ +	δ)	and	the	predicted	energy	C(Sτ).	

• In	more	complex	schemes,	it	may	use	combinations	of	future	intrinsic	energies	as	
targets.	

• Note	that	the	state	sequence	may	contain	information	about	the	actions	planned	or	
taken	by	the	agent.	



4/22/24

11

Self-Supervised	Learning	(SSL)	and	
Energy-Based	Models	(EBM)	

• SSL	is	a	learning	paradigm	in	which	
a	learning	system	is	trained	to	“fill	
in	the	blanks”.

• It	captures	the	dependencies	
between	observed	parts	of	the	
input	and	possibly	unobserved	
parts	of	the	input.	

• Part	of	the	input	signal	is	observed	
and	denoted	x	(in	pink),	and	part	of	
the	input	signal	is	either	observed	
or	unobserved	and	denoted	y	(in	
blue).	

SSL	and	EBM	

• In	a	temporal	prediction	scenario,	x	represents	past	and	present	observations,	
and	y	represent	future	observations.	

• In	a	general	pattern	completion	scenario,	various	parts	of	the	input	may	be	
observed	or	unobserved	at	various	times.	

• The	learning	system	is	trained	to	capture	the	dependencies	between	x	and	y	
through	a	scalar-valued	energy	function	F	(x,	y)	that	takes	low	values	when	x	and	
y	are	consistent	or	compatible,	and	higher	values	if	x	and	y	are	inconsistent	or	
incompatible.	

• In	a	video	prediction	scenario,	the	system	would	produce	a	low	energy	value	if	a	
video	clip	y	is	a	plausible	continuation	of	the	video	clip	x.	



4/22/24

12

SSL	and	EBM	

• This	energy-based	model	(EBM)	formulation	enables	the	system	to	represent	
multi-modal	dependencies	in	which	multiple	values	of	y	(perhaps	an	infinite	set)	
may	be	compatible	with	a	given	x.	

• In	the	right	panel,	an	energy	landscape	is	represented	in	which	dark	discs	
represent	data	points,	and	closed	lines	represents	contours	(level	sets)	of	the	
energy	function.	

Latent-Variable	Energy-Based	Model	(LVEBM)
• To	evaluate	the	degree	of	

compatibility	between	x	and	y,	an	
EBM	may	need	the	help	of	a	latent	
variable	z.	

• The	latent	variable	can	be	seen	as	
parameterizing	the	set	of	possible	
relationships	between	an	x	and	a	set	
of	compatible	y.	

• Latent	variables	represent	
information	about	y	that	cannot	be	
extracted	from	x.	



4/22/24

13

Latent-Variable	Energy-Based	Model	(LVEBM)
• For	example,	if	x	is	a	view	of	an	object,	

and	y	another	view	of	the	same	object,	
z	may	parameterize	the	camera	
displacement	between	the	two	views.	

• Inference	consists	in	finding	the	latent	
that	minimizes	the	energy	ž =	
argminz∈Z Ew(x,	y,	z).	

• The	resulting	energy	Fw(x,	y)	=	Ew(x,	y,	ž)	
only	depends	on	x	and	y.	

• In	the	dual	view	example,	inference	
finds	the	camera	motion	that	best	
explains	how	x	could	be	transformed	
into	y.	

Contrastive and	regularized	methods	for	EBM	
training
• A	conceptual	diagram	of	an	energy	

landscape	is	shown	on	the	left.	
• Training	samples	are	blue	dots.
• The	region	of	low	energy	is	shown	

in	orange	(a	level	set	of	the	energy	
function).

• Contrastivemethods	(top	right)	
push	down	on	the	energy	of	
training	samples	(blue	dots)	and	
pulls	up	on	the	energies	of	
suitably-placed	contrastive	
samples	(green	dots).	



4/22/24

14

Contrastive	and	regularized	methods	for	EBM	
training
• Regularizedmethods	(bottom	

right)	push	down	on	the	energy	
of	training	samples	and	use	a	
regularizer term	that	minimizes	
the	volume	of	low-energy	
regions.	

• This	regularization	has	the	
effect	of	“shrink-wrapping”	the	
regions	of	high	data	density	
within	the	low-energy	regions,	
to	the	extent	that	the	flexibility	
of	the	energy	function	permits	
it.	

Joint-Embedding	Predictive	Architecture	
(JEPA)
• The	Joint	Embedding	Predictive	Architectures	(JEPA)	is	an	architecture	
for	SSL.
• It	can	seen	as	a	combination	of	the	Joint	Embedding	Architecture	and	
the	Latent-Variable	Generative	Architecture.	
• Centerpiece	of	the	paper	



4/22/24

15

The	Joint-Embedding	Predictive	Architecture	
(JEPA)	consists	of	two	encoding	branches

• The	first	branch	computes	sx,	a	
representation	of	x	and	the	second	
branch	sy a	representation	of	y.	

• The	encoders	do	not	need	to	be	
identical.	

• A	predictor	module	predicts	sy from	
sx with	the	possible	help	of	a	latent	
variable	z.	

• The	energy	is	the	prediction	error.	

The	Joint-Embedding	Predictive	Architecture	
(JEPA)	consists	of	two	encoding	branches

• The	main	advantage	of	this	architecture	for	
representing	multi-modal	dependencies	is	twofold:
1. The	encoder	function	sy	=	Enc(y)	may	possess	

invariance	properties	that	will	make	it	produce	
the	same	sy	for	a	set	of	different	y.	
This	makes	the	energy	constant	over	this	set	and	

							allows	the	model	to	capture	complex	multi-modal	
							dependencies.
2. The	latent	variable	z,	when	varied	over	a	set	Z,	
							can	produce	a	set	of	plausible	predictions	
							Pred(sx,	Z)	=	{s	̃y	=	Pred(sx,	z)	∀z	∈	Z}	



4/22/24

16

The	Joint-Embedding	Predictive	Architecture	
(JEPA)	consists	of	two	encoding	branches
• If	x	is	a	video	clip	of	a	car	approaching	a	fork	in	

the	road,	sx and	sy may	represent	the	position,	
orientation,	velocity	and	other	characteristics	of	
the	car	before	and	after	the	fork,	z	may	
represent	whether	the	car	takes	the	left	branch	
or	the	right	branch	of	the	road.	

Non-contrastive	training	of	JEPA
• The	main	attraction	of	JEPAs	

is	that	they	can	be	trained	
with	non-contrastive*
methods.	

• The	basic	principle	of	such	
training	is	that	
1. sx should	be	maximally	

informative	about	x;
2. sy should	be	maximally	

informative	about	y;	
3. sy should	be	easily	

predictable	from	sx;
4. z	should	have	minimal	

information	content.	
*)	Non-contrastive	learning	is a	self-supervised	learning	
technique	that	only	uses	positive	sample	pairs.



4/22/24

17

Training	a	JEPA	with	VICReg

• VICReg is	a	non	sample-
contrastive	method	for	
training	embeddings.	

• The	information	content	of	the	
representations	sx and	sy is	
maximized	by	first	mapping	
them	to	higher-dimensional	
embeddings vx and	vy through	
an	expander	(e.g.	a	trainable	
neural	net	with	a	few	layers).	

Hierarchical	JEPA	(H-JEPA)
• The	ability	of	the	JEPA	to	learn	

abstract	representations	in	
which	accurate	prediction	can	
be	performed	allows	
hierarchical	stacking.	

• JEPA-1 extracts	low-level	
representations	and	performs	
short-term	predictions.



4/22/24

18

Hierarchical	JEPA	(H-JEPA)
• JEPA-2 takes	the	

representations	extracted	by	
JEPA-1	as	inputs	and	extracts	
higher-level	representations.

• More	abstract	representations	
ignore	details	of	the	inputs	
that	are	difficult	to	predict	in	
the	long	term,	enabling	them	
to	perform	longer-term	
predictions	with	coarser	
descriptions	of	the	world	
state.	

Hierarchical	JEPA	for	Mode-2	hierarchical	
planning

• A	complex	task	is	defined	by	a	high-level	cost	computed	from	a	high-level	world-
state	representation	C(s2[4]).	

• A	sequence	of	high-level	abstract	actions	(a2[2],a2[4])	is	inferred	that	minimizes	
C(s2[4]).



4/22/24

19

Hierarchical	JEPA	for	Mode-2	hierarchical	
planning

• The	lower	layer	then	infers	an	action	sequence	that	minimizes	the	subgoal costs.
• Although	only	a	2-layer	hierarchy	is	shown	here,	it	is	straightforward	to	extend	

the	concept	to	multiple	levels.
• The	process	described	here	is	sequential	top-down,	but	a	better	approach	would	

be	to	perform	a	joint	optimization	of	the	actions	in	all	the	layers.	

• The	inferred	abstract	
actions	are	fed	to	lower-
level	cost	modules	
C(s[2]),	C(s[4])	which	
define	subgoals for	the	
lower	layer.	

Hierarchical	JEPA	for	Mode-2	hierarchical	
planning	in	an	uncertain	environment
• Realistic	

environments	are	
not	entirely	
predictable,	even	
when	using	highly-
abstract	
representations.	

• Uncertainty	about	
predictions	can	be	
handled	by	
predictors	with	
latent	variables.	



4/22/24

20

Hierarchical	JEPA	for	Mode-2	hierarchical	
planning	in	an	uncertain	environment
• The	latent	variables	(red	circles)	

contain	information	about	the	
prediction	that	cannot	be	derived	
from	the	prior	observation.

• To	produce	consistent	latent	
sequences,	the	parameters	of	the	
regularizer can	be	functions	of	
previous	states	and	retrieved	
memories.	

Hierarchical	JEPA	for	Mode-2	hierarchical	
planning	in	an	uncertain	environment
• Each	sample	leads	to	a	different	

prediction.	
• As	the	prediction	progresses,	the	

number	of	generated	state	trajectories	
may	grow	exponentially.	

• If	each	latent	variable	has	k	possible	
discrete	values,	the	number	of	possible	
trajectories	will	grow	as	kt,	where	t	is	
the	number	of	time	steps.



4/22/24

21

Hierarchical	JEPA	for	Mode-2	hierarchical	
planning	in	an	uncertain	environment
• Directed	search	and	pruning	

strategies	must	be	employed.	
• With	multiple	predicted	trajectories,	

optimal	action	sequences	can	be	
computed	that	minimize	the	average	
cost,	or	a	combination	of	average	and	
variance	of	the	cost	so	as	to	minimize	
risk.	


