
4/18/24

1

Transformers	– Part	3
Summary	of	Chapter	10	from

Speech	and	Language	Processing,	
Jurafsky and	Martin,	Feb.	3,	2024	draft

Michael	Wollowski

Language	modeling	head

• Language	models,	from	a	simple	n-gram	model	to	the	feedforward	
and	RNN	language	models	are	word	predictors.	
• Given	a	context	of	words,	they	assign	a	probability	to	each	possible	
next	word.
• In	Transformer	architectures,	there	is	a	language	modeling	head	
designed	for	this	purpose.



4/18/24

2

Language	modeling	head

• If	the	preceding	context	is	“Thanks	for	all	the”	and	we	want	to	know	
the	likelihood	of	the	next	word	being	“fish”	we	would	compute:	

P(fish|Thanks for	all	the)	
• Language	models	assign	such	a	conditional	probability	to	every	
possible	next	word.
• In	other	words,	they	give	a	distribution	over	the	entire	vocabulary.	
• An	n-gram	language	models	computes	such	probabilities	given	the	n	−	
1	prior	words as	context.
• For	transformer	language	models,	the	context	can	be	quite	large:	up	
to	2048	or	even	4096	tokens.	

Language	
modeling	
head

• The	language	modeling	head	takes	the	output	of	the	final	transformer	
layer	from	the	last	token	N	and	use	it	to	predict	the	upcoming	word	at	
position	N	+	1.	



4/18/24

3

Language	
modeling	head

• The	first	module	is	a	linear	layer.
• It	projects	from	the	output	hLN to	the	logit	vector,	or	score	vector.
• The	score	vector	has	a	single	score	for	each	of	the	words	in	the	
vocabulary	V	.	
• Commonly	this	matrix	is	the	transpose	of	the	embedding	matrix	E.
• The	transpose	ET is	called	the	unembedding layer,	because	it	performs	
the	reverse	of	the	embedding	that	occurs	at	the	input	stage	of	the	
transformer.

Language	
modeling	head

• A	softmax layer	turns	the	logits	
u into	the	probabilities	y	over	
the	vocabulary.	
• Sidebar:	

Probability:	p		->
Odds:											p/(1-p)		->	
logits:											log(p/1-p)



4/18/24

4

Language	
modeling	head

• Use	the	word	probabilities	to	generate	text.
• Sample	a	word	from	these	probabilities	y.	
• For	example,	sample	the	highest	probability	word,	called	‘greedy’	
decoding.
• Recall	the	article	entitled	“What	kind	of	Mind	does	ChatGPT have?”
• Whatever	entry	yk we	choose	from	the	probability	vector	y,	we	
generate	the	word	that	has	that	index	k.	

Transformer
Decoder-only
Model
• The	figure	shows	the	total	stacked	
architecture.	

• The	input	to	the	first	transformer	
block	is	represented	as	X.

• They	are	the	N	indexed	word	
embeddings +	position	
embeddings: E[w]	+	P

• The	input	to	all	the	other	layers	is	
the	output	H	from	the	prior	layer.



4/18/24

5

Transformer	Decoder-only	Model

• The	language	model	on	the	prior	
slide	is	called	a	decoder-onlymodel.	

• This	is	because	this	model	
constitutes	roughly	half	of	the	
encoder-decoder	model	for	
transformers.

• Confusingly,	the	original	introduction	
of	the	transformer	had	an	encoder-
decoder	architecture.

• It	was	only	later	that	the	standard	
paradigm	for	causal	language	model	
was	defined	by	using	only	the	
decoder	part	of	this	original	
architecture.	

Image	source:	https://www.comet.com/site/blog/explainable-ai-for-transformers/

Text	Completion

• A	language	model	is	
given	a	text	prefix	and	
is	asked	to	generate	a	
possible	completion.	



4/18/24

6

Text	Completion

• As	the	generation	process	proceeds,	the	model	has	direct	access	to	
the	priming	context	as	well	as	to	all	of	its	own	subsequently	
generated	outputs	(at	least	as	much	as	fits	in	the	large	context	
window).
• This	ability	to	incorporate	the	entirety	of	the	earlier	context	and	
generated	outputs	at	each	time	step	is	the	key	to	the	power	of	large	
language	models	built	from	transformers.	

Question	Answering

• Why	should	we	care	about	predicting	upcoming	words?	
• Many	practical	NLP	tasks	can	be	cast	as	word	prediction.
• Consider	the	task	of	answering	simple	questions.
• The	system	is	given	some	question	and	must	give	a	textual	answer.	
• We	can	cast	the	task	of	question	answering	as	word	prediction.
• Consider	the	question:	Who	wrote	the	book	‘‘The	Origin	of	Species"?	



4/18/24

7

Question	Answering

• We	may	ask	a	language	model	to	compute	
P(w|Q:	Who	wrote	the	book	“The	Origin	of	Species”?	A:)

• We	then	look	at	which	words	w	with	high	probabilities,	we	might	
expect	to	see	that	Charles	is	very	likely.
• If	we	choose	Charles	and	continue	and	ask	

P(w|Q:	Who	wrote	the	book	“The	Origin	of	Species”?	A:	Charles)	
• We	might	now	see	that	Darwin	is	the	most	probable	word,	and	select	
it.	

Text	Summarization

• In	text	summarization,	we	take	a	long	text	and	produce	a	summary	of	it.	
• We	can	cast	summarization	as	language	modeling.
• Give	an	LLM	a	text,	followed	by	a	token	like	tl;dr;
• This	token	is	short	for	‘too	long;	did	not	read’	
• We	can	perform	conditional	generation	as	follows:	
• Give	the	language	model	the	text	and	token	
• Ask	it	to	generate	words,	one	by	one
• Take	the	entire	response	as	a	summary.	



4/18/24

8

Text	Summarization

Text	Summarization

A	human-
produced	
summary.



4/18/24

9

Text	Summarization

• Transformers	succeed	at	this	task	because	of	their	ability	of	self-
attention	to	incorporate	information	from	the	large	context	windows.
• The	model	has	access	to	the	original	article	as	well	as	to	the	newly	
generated	text	throughout	the	process.	
• Which	words	shall	we	generate	at	each	step?	
• A	simple	way	is	to	always	generate	the	most	likely	word	given	the	
context.	
• This	is	called	greedy	decoding.	
• It	will	make	a	choice	that	is	locally	optimal.
• It	may	not	be	globally	optimal.

Text	Summarization

• A	major	problem	with	greedy	decoding	is	that	the	words	it	chooses	
are	predictable.
• The	resulting	text	is	generic	and	often	quite	repetitive.	
• People	prefer	text	which	has	been	generated	by	more	sophisticated	
methods	that	introduce	a	bit	more	diversity	into	the	generations.



4/18/24

10

Self-supervised	
training	algorithm	for	Transformers
• Transformers	are	trained	on	a	corpus	of	text.
• At	each	time	step	t,	we	ask	the	model	to	predict	the	next	word.	
• We	call	such	a	model	self-supervised, because	the	natural	sequence	
of	words	is	its	own	supervision.
• We	simply	train	the	model	to	minimize	the	error	in	predicting	the	true	
next	word	in	the	training	sequence.

Self-supervised	
training	algorithm	for	Transformers
• At	each	word	position	t	of	the	input,	the	model	takes	as	input	the	correct	
sequence	of	tokens	w1:t

• It	uses	them	to	compute	a	probability	distribution	over	possible	next	words	
so	as	to	compute	the	model’s	loss	for	the	next	token	wt+1

• Then	we	move	to	the	next	word.
• We	ignore	what	the	model	predicted	for	the	next	word	and	instead	use	the	
correct	sequence	of	tokens	w1:t+1 to	estimate	the	probability	of	token	wt+2

• We	always	give	the	model	the	correct	history	sequence	to	predict	the	next	
word.
• This	is	called	teacher	forcing.	



4/18/24

11

Self-supervised	
training	algorithm	for	Transformers
• At	each	step,	
given	all	the	
preceding	
words,	the	
final	
transformer	
layer	produces	
an	output	
distribution	
over	the	
entire	
vocabulary.	

Self-supervised	
training algorithm	
for	Transformers

• During	training,	the	probability	assigned	to	the	correct	word	is	used	
to	calculate	the	loss	for	each	item	in	the	sequence.	
• The	weights	in	the	network	are	adjusted	to	minimize	the	average	loss	
over	the	training	sequence	via	gradient	descent.	



4/18/24

12

Training	corpora	for	LLMs

• Large	language	models	are	mainly	trained	on	text	scraped	from	the	
web,	augmented	by	more	carefully	curated	data.	
• Since	those	training	corpora	are	so	large,	they	are	likely	to	contain	
many	natural	examples	that	can	be	helpful	for	NLP	tasks:
• question	and	answer	pairs	(for	example	from	FAQ	lists),	
• translations	of	sentences	between	various	languages,	
• documents	together	with	their	summaries,	and	so	on.	

Training	corpora	for	LLMs

• Web	text	is	usually	taken	from	corpora	of	automatically-crawled	web	pages	
like	the	common	crawl.
• It	is	a	series	of	snapshots	of	the	entire	web	produced	by	the	non-profit	
Common	Crawl	that	each	have	billions	of	webpages.	
• Various	cleanups	of	common	crawl	data	exist.
• One	is	Colossal	Clean	Crawled	Corpus	(C4)
• It	is	a	corpus	of	156	billion	tokens	of	English	that	is	filtered	in	various	ways.
• Filtering	includes:

• Removing	duplicated	data,	
• removing	non-natural	language	like	code,	
• sentences	with	offensive	words	from	a	blocklist.	



4/18/24

13

Training	corpora	for	LLMs

• What	is	in	the	training	data?	
• An	analysis	suggests	that	in	large	part	it’s:
• patent	text	documents,	
• Wikipedia,	and	
• news	sites	

• Wikipedia	plays	a	role	in	lots	of	language	model	training,	as	do	
corpora	of	books.	
• The	GPT3	models	are	trained	mostly	on	the	web	(429	billion	tokens),	
some	text	from	books	(67	billion	tokens)	and	Wikipedia	(3	billion	
tokens).	

Bias	in	
Embeddings

Source:	
https://medium.com/institute-for-
applied-computational-science/bias-
in-nlp-embeddings-b1dabb8bbe20



4/18/24

14

Bias	in	
Embeddings

Source:	
https://medium.com/institute-for-
applied-computational-science/bias-
in-nlp-embeddings-b1dabb8bbe20

Scaling	Laws

• The	performance	of	large	language	models	has	shown	to	be	mainly	
determined	by	3	factors:	
• model	size	(the	number	of	parameters),
• dataset	size	(the	amount	of	training	data),	and	
• the	number	of	iterations	used	for	training.	

• We	can	improve	a	model	by	adding	parameters	(adding	more	layers	
or	having	wider	contexts	or	both),	by	training	on	more	data,	or	by	
training	for	more	iterations.	
• The	relationships	between	these	factors	and	performance	are	known	
as	scaling	laws.	


