
4/15/24

1

Transformers	– Part	2
Summary	of	Chapter	10	from

Speech	and	Language	Processing,	
Jurafsky and	Martin,	Feb.	3,	2024	draft

Michael	Wollowski

Transformers

Source:	https://www.comet.com/site/blog/explainable-ai-for-transformers/

4/15/24

2

Review

Image	source:	Speech	and	Language	Processing,	Jurafsky and	Martin,	Feb.	3,	2024	draft

Query:	As	the	current	
focus	of	attention	when	
being	compared	to	all	of	
the	other	preceding	
inputs.	
Key:	In	its	role	as	a	
preceding	input	being	
compared	to	the	current	
focus	of	attention.
Value:	As	a	value	used	to	
compute	the	output	for	
the	current	focus	of	
attention.	

Parallelizing	Self-Attention

• So	far,	we	computed	a	single	output	at	a	single	time	step	i.	
• Each	output,	yi,	is	computed	independently.
• The	calculation	can	be	parallelized.
• We	pack	the	input	embeddings of	the	N	tokens	of	the	input	sequence	
into	a	singlematrix	X∈ RN×d

• Each	row	of	X is	the	embedding	of	one token	of	the	input.	
• Transformers	for	large	language	models	can	have	an	input	length	N	=	
1024,	2048,	or	4096	tokens.
• X has	between	1K	and	4K	rows,	each	of	the	dimensionality	of	the	
embedding	d.	

4/15/24

3

Parallelizing	Self-Attention

• We	multiply	X	by	the	key,	query,	and	value	matrices.
• They	all	are	of	size	d x	d.
• This	produces	matrices	Q	∈ RN×d ,	K	∈ RN×d ,	and	V	∈ RN×d

• And	the	query,	key,	and	value	vectors:	
Q=XWQ;	 K=XWK;	V=XWV

• Given	these	matrices	we	can	compute	all	the	requisite	query-key	
comparisons	simultaneously	by	multiplying	Q	and	KT in	a	single	matrix	
multiplication.
• The	product	is	of	shape	N	× N.

Masking	out	the	Future

• The	self-attention	computation	has	a	
problem:	the	calculation	in	QKT results	in	a	
score	for	each	query	value	to	every	key	
value,	including	those	that	follow	the	
query.	
• This	is	inappropriate	in	the	setting	of	
language	modeling:	guessing	the	next	
word	is	pretty	simple	if	you	already	know	
it!	
• Hence,	the	upper-triangle	portion	of	
the	comparisons	matrix	set	to	−∞.
• Softmax will	turn	them	into	zeros	

Image	source:	Speech	and	Language	Processing,	Jursafky and	Martin,	Jan.	12,	2022	draft

4/15/24

4

Multihead Attention

• Different	words	in	a	sentence	can	relate	to	each	other	in	many	different	
ways	simultaneously.	
• For	example,	distinct	syntactic,	semantic,	and	discourse	relationships	can	
hold	between	verbs	and	their	arguments	in	a	sentence.	
• It	would	be	difficult	for	a	single	self-attention	model	to	learn	to	capture	all	
of	the	different	kinds	of	parallel	relations	among	its	inputs.	
• Hence,	transformers	have	more	than	one	attention	head.
• They	are	computed	in	parallel	at	the	same	depth	in	a	model,	each	with	its	
own	set	of	parameters.	
• This	is	similar	to	filters	in	CNNs.
• By	using	distinct	sets	of	parameters,	each	head	can	learn	different	aspects	
of	the	relationships	among	inputs.	

Attention

Source:	https://www.comet.com/site/blog/explainable-ai-for-transformers/

Attention
GPT-2	associated	“it”	
with	“the	animal”

4/15/24

5

BertViz shows that
attention captures
various patterns in
language,
including
positional patterns,
delimiter patterns,
and bag-of-words.

Source:	https://www.comet.com/site/blog/explainable-ai-for-transformers/

Multihead Attention

• Four	self-attention	heads.
• Each	of	the	multihead self-
attention	layers	is	provided	
with	its	own	set	of	key,	query	
and	value	weight	matrices.	

• The	outputs	from	each	of	the	
layers	are	concatenated.

• They	are	then	projected	to	d.
• Thus	producing	an	output	of	
the	same	size	as	the	input.

• The	attention	can	be	
followed	by	layer	norm	and	
feedforward

• Layers	can	be	stacked.	

4/15/24

6

Transformer	Blocks

• The	self-attention	
calculation	lies	at	the	core	of	
what	is	called	a	transformer	
block.
• In	addition	to	the	self-
attention	layer,	it	includes	
additional	feedforward	
layers,	residual	connections,	
and	normalizing	layers.	

Transformer	Blocks

• Feedforward	layer:	It	contains	N	position-wise	networks,	one	at	each	
position.	
• Each	is	a	fully-connected	2-layer	network,	i.e.,	one	hidden	layer,	two	
weight	matrices.	
• The	weights	are	the	same	for	each	position,	but	the	parameters	are	
different	from	layer	to	layer.	

4/15/24

7

Transformer	Blocks

• Residual	connections:	They	pass	information	from	a	lower	layer	to	a	
higher	layer	without	going	through	the	intermediate	layer.
• Layer	normalization	(Layer	norm).	Summed	vectors	are	normalized.
• It	is	used	to	improve	training	performance	in	deep	neural	networks.
• It	keeps	the	values	of	a	hidden	layer	in	a	range	that	facilitates	
gradient-based	training.	
• Layer	norm	is	a	variation	of	the	standard	score,	or	z-score,	from	
statistics	applied	to	a	single	vector	in	a	hidden	layer.	

Transformer	Blocks

• The	input	to	layer	norm	is	a	single	vector,	for	a	particular	token	position	i,	
and	the	output	is	that	vector	normalized.	
• The	first	step	in	layer	normalization	is	to	calculate	the	mean,	μ,	and	
standard	deviation,	σ,	over	the	elements	of	the	vector	to	be	normalized.	
• Given	these	values,	the	vector	components	are	normalized	by	subtracting	
the	mean	from	each	and	dividing	by	the	standard	deviation.	
• The	result	of	this	computation	is	a	new	vector	with	zero	mean	and	a	
standard	deviation	of	one.

4/15/24

8

Transformer	Block:	Layer	Normalization

• Typical:	z-score

• Z	=	standard	score
• X	=	observed	value
• μ =	mean	of	sample
• σ = standard	deviation	of	the	sample

Residual	Stream	View	of	the	Transformer

• An	alternate	view	of	a	transformer	is	
to	trace	the	processing	of	an	
individual	token	vector	xi.
• The	diagram	shows	the	residual	
stream	for	token	xi
• The	output	of	the	feedforward	and	
multi-head	attention	layers	are	
added	in,	and	processed	by	layer	
norm,	to	produce	the	output	of	this	
block,	hi.	
• Of	all	the	components,	only	the	
Multi	Head	Attention	component	
reads	information	from	the	other	
residual	streams	in	the	context.	

4/15/24

9

Moving	Information

• The	attention	head	can	move	
information	from	token	A’s	
residual	stream	into	token	B’s	
residual	stream.	

Embeddings and	Such

• A	token	embedding	is	a	vector	of	dimension	d	that	will	be	the	
initial	representation	for	the	input	token.
• As	the	vector	is	passed	up	through	the	transformer	layers	in	
the	residual	stream,	this	embedding	representation	will	change	
and	grow,	incorporating	context	and	playing	a	different	role	
depending	on	the	kind	of	language	model	we	are	building	

4/15/24

10

Embeddings and	Such

• Given	an	input	token	string	like	“thanks	for	all	the”	the	transformer	
architecture	first	convert	the	tokens	into	vocabulary	indices.
• Let	V	be	the	vocabulary	and	|V|	be	the	size	of	V.
• Let	E	be	the	embedding	matrix.
• The	representation	of	“thanks	for	all	the”	might	be	
w	=	[5,	4000,	10532,	2224].	

• We	treat	the	values	of	w	as	indices	to	corresponding	
rows	from	E,	(row	5,	row	4000,	row	10532,	row	2224).	

One	hot-hot-hot	vector

• In	a	one-hot	vector	all	the	elements	are	0	except	for	one,	the	element	
whose	dimension	is	the	word’s	index	in	the	vocabulary.
• If	the	word	“thanks”	has	index	5	in	the	vocabulary,	then	x5	=1,	and	all	
other	xi	=0	

 [0 0 0 0 1 0 0 ... 0 0 0 0]
 1 2 3 4 5 6 7 |V|

4/15/24

11

Selecting	the	token	embedding

Multiplying	E by	a	one-hot	vector	that	has	only	one	non-zero	element	xi =	
1	simply	selects	the	relevant	row	vector	for	word	i,	resulting	in	the	
embedding	for	word	i.

Storing	all	of	the	N	input	tokens

To	represent	the	entire	token	sequence,	we	multiply	all	N one-hot	
vectors	with	E.

4/15/24

12

Positions

• While	the	order	in	which	the	N	tokens	are	inserted	represents	word	
order,	this	is	not	sufficient.	
• Recall	that	attention	heads	can	move	tokens	around.
• We	wish	to	associate	with	each	word	the	order	in	which	it	appeared	
in	the	text.	
• As	such,	we	combine	these	token	embeddings with	positional	
embeddings specific	to	each	position	in	an	input	sequence.	

Positions

Combining	word	embeddings with	positions.

4/15/24

13

Positions

• The	positions	are	absolute.
• However,	we	do	not	simply	use	integers.	
• Instead,	we	start	with	randomly	initialized	embeddings corresponding	
to	each	possible	input	position	up	to	some	maximum	length.	
• For	example,	just	as	we	have	an	embedding	for	the	word	fish,	we	will	
have	an	embedding	for	the	position	3.	

Positions

• As	with	word	embeddings,	these	positional	embeddings are	learned	
along	with	other	parameters	during	training.	
• We	can	store	them	in	a	matrix	Epos of	shape	[1 x N].	
• The	individual	token	and	position	embeddings are	both	of	size	[1×d],	
so	their	sum	is	also	[1	× d]	
• To	produce	an	input	embedding	that	captures	positional	information,	
we	just	add	the	word	embedding	for	each	input	to	its	corresponding	
positional	embedding.	
• This	new	embedding	serves	as	the	input	for	further	processing.	

