4/15/24

Transformers — Part 2

Summary of Chapter 10 from
Speech and Language Processing,
Jurafsky and Martin, Feb. 3, 2024 draft
Michael Wollowski

Transformers Transformers

ENCODER DECODER ENCODER-
ONLY ONLY DECODER

auto-encoding auto-regressive sequence-to-
models models sequence models

« Sentence classification + Text generation * Translation
* Named entity * Causal language ¢ Summarization
recognition modeling
« Extractive question-
answering
* Masked language
modeling

BERT, RoBERTa, distilBERT GPT-2, GPT Neo, GPT-3 BART, T5, Marian

* Generative question-
answering

Source: https://www.comet.com/site/blog/explainable-ai-for-transformers/

4/15/24

Review

Query: As the current
focus of attention when
being compared to all of
the other preceding
inputs.

Key: In its role as a
preceding input being
compared to the current
focus of attention.
Value: As a value used to
compute the output for
the current focus of
attention.

Output of self-attention

6. Sum the weighted
value vectors

5. Weigh each value vector
Qi,j

4. Turn into weights via softmax (Q

3. Divide score by dj, dy

2. Compare x3’s query with
the keys for x1, x2, and x3

1. Generate

key, query, value
vectors

-y
<
%

Image source: Speech and Language Processing, Jurafsky and Martin, Feb. 3, 2024 draft

Parallelizing Self-Attention

* So far, we computed a single output at a single time step i.
* Each output, y,, is computed independently.
* The calculation can be parallelized.

* We pack the input embeddings of the N tokens of the input sequence
into a single matrix X € RV

* Each row of X is the embedding of one token of the input.

* Transformers for large language models can have an input length N =
1024, 2048, or 4096 tokens.

* X has between 1K and 4K rows, each of the dimensionality of the

embedding d.

N

4/15/24

Parallelizing Self-Attention

* We multiply X by the key, query, and value matrices.
* They all are of size d x d.
* This produces matrices Q € RV, K € RV and V € RN
* And the query, key, and value vectors:
Q=XWS; K=XW£¥; V=XWV
* Given these matrices we can compute all the requisite query-key

comparisons simultaneously by multiplying Q and K™ in a single matrix
multiplication.

* The product is of shape N x N.

Masking out the Future

* The self-attention computation hasa q1°k1| —oo | —o0 | —o0 | —o0
problem: the calculation in QK" results in a

score for each query value to every key

value, including those that follow the q2+k1|q2+k2| —o0 | —o0 | —oo
query.
* This is inappropriate in the setting of N |g3'k1|g3+k2|g3+k3| —c0 | —o0

language modeling: guessing the next

word is pretty simple if you already know

it! q4+k1|q4+k2 |g4+k3 |qd+k4| —oco
* Hence, the upper-triangle portion of
the comparisons matrix set to —ee. g5°+k1[g5+k2 | q5-k3|q5+k4 g5-k5

¢ Softmax will turn them into zeros

Image source: Speech and Language Processing, Jursafky and Martin, Jan. 12, 2022 draft

4/15/24

Multihead Attention

* Different words in a sentence can relate to each other in many different
ways simultaneously.

* For example, distinct syntactic, semantic, and discourse relationships can
hold between verbs and their arguments in a sentence.

* It would be difficult for a single self-attention model to learn to capture all

of the different kinds of parallel relations among its inputs.
* Hence, transformers have more than one attention head.
* They are computed in parallel at the same depth in a model, each with its

own set of parameters.
* This is similar to filters in CNNs.

. B}/ using distinct sets of parameters, each head can learn different aspects
o

the relationships among inputs.

Attention

The The
animal animal
GPT-2 associated “it” didn didn —
H % . ” 't t 7 %
with “the animal
Z cross cross
the the
street street
because because
it it
was was
too too
scared scared

Layer 6, Head 0

Source: https://www.comet.com/site/blog/explainable-ai-for-transformers/

4/15/24

* The attention can be
followed by layer norm and
feedforward

* Layers can be stacked.

K wV
(WQPW EAA]

Head 1 |

Layer: (1] Attention: Layer: (1) Attention: Layer: (3] Attention: (Al
[|
[CLS] [CLS] [cLs] [cLS] [CLS] [cLs]
the the the the the the
quick quick quick quick quick quick
. brown brown browr; ;:rown browr; ’brown
BertV1Z ShOWS that fox fox fox fox fox fox
attention captures Jumps fumps jumps iumps jumps jumps
. . over over over over over over
various patterns in the the the the the the
lazy lazy lazy lazy lazy lazy
language, dog dog dog dog dog dog
including 557 (557 (SEP) [SEP] ISEP) (SEP)
‘s Layer: (0| Attention: (A1 v|Layer:(0v]Attention:[Al " V]iayer:(ov]Attention: (A1
positional patterns, 5 =1 ayer SR Lavr (0] Attention: (A
delimiter patterns, [cLs) [cLs| [CLS] ~ _, [cLs] (cLs] , [CLS]
the the the N the the the
and bag-Of-WordS. quick quick quick .~ quick quick quick
brown brown browr; ;)rown browr; L)rown
fox fox fox fox fox fox
jumps jumps jumps jumps jumps jumps
over over over over over over
the the the the the the
lazy lazy lazy lazy lazy lazy
dog dog dog dog dog dog
[SEP] [SEP] [SEP] . [SEP] [SEP] * [SEP]
Source: https://www.comet.com/site/blog/explainable-ai-for-transformers/
* Four self-attention heads.
. N (®)
* Each of the multihead self-
attention layers is provided
with its own set of key, query Pron
" A roject from 1o}
and value weight matrices. hd, to d WO [hd, xd]
* The OUtpUtS from each of the Concatenate head1 output val | head2 output val | head3 output val | head4 output val
layers are concatenated. Outputs INxd,] INxdy] Nxd] Nxd,]
. [Nxhd,] A
* They are then projected to d. (We, WK, wY, Head4)
y tTrtlus producing atr;]Ot,Jtloutt of Multihead (Wo,wE, wY, Head3)
e Ssame Size as e Input. i
p Atltentlon Layer (v Y, Head 2 |
with h=4 heads

Nxd]

(6 6 §

&)

4/15/24

Transformer Blocks

* The self-attention
calculation lies at the core of
what is called a transformer
block.

* In addition to the self-
attention layer, it includes
additional feedforward
layers, residual connections,
and normalizing layers.

/

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\

©)
R —— | .
Transformer (Layer Normalize)
Block

Residual

connection

Residual

connection

Transformer Blocks

| Transformer

QIS - &

Block

Residual
connection|

Residual
connection|

(WEE - &)

* Feedforward layer: It contains N position-wise networks, one at each

position.

* Each is a fully-connected 2-layer network, i.e., one hidden layer, two

weight matrices.

* The weights are the same for each position, but the parameters are

different from layer to layer.

Layer Normalize |
]
]

]
]
Feedforward
:
]
!
i
]

4/15/24

QIS)

! Transformer Layer Normalize |
‘

Transformer Blocks K 3
| %

Residual
connection|

(WEE -~ &)

* Residual connections: They pass information from a lower layer to a
higher layer without going through the intermediate layer.

* Layer normalization (Layer norm). Summed vectors are normalized.
* |t is used to improve training performance in deep neural networks.

* It keeps the values of a hidden layer in a range that facilitates
gradient-based training.

* Layer norm is a variation of the standard score, or z-score, from
statistics applied to a single vector in a hidden layer.

QIS - &

| Transformer
Block

Transformer Blocks - e

Residual
connection

(M)
* The input to layer norm is a single vector, for a particular token position i,
and the output is that vector normalized.

* The first step in layer normalization is to calculate the mean, 4, and
standard deviation, o, over the elements of the vector to be normalized.

* Given these values, the vector components are normalized by subtracting
the mean from each and dividing by the standard deviation.

* The result of this computation is a new vector with zero mean and a
standard deviation of one.

Layer Normalize |
|
]

]
]
Feedforward
:
|
|
i
]
]

4/15/24

Transformer Block: Layer Normalization

* Typical: z-score 5 = & —H
o)

* Z = standard score

* X = observed value

* 4 = mean of sample

* 0 = standard deviation of the sample

Residual Stream View of the Transformer

_ _ hiq hi Piv1
* An alternate view of a transformer is
to trace the processing of an Layer Norm
individual token vector x;. g
* The diagram shows the residual -
stream for token x;
Feedforward

* The output of the feedforward and
multi-head attention layers are
added in, and processed by layer (Layer Norm
norm, to produce the output of this

block, h;. ¥
¢ Of all the components, only the _ :-
Multi Head Attention component P —— RN

reads information from the other
residual streams in the context.

i Xi+1

4/15/24

Moving Information

* The attention head can move
information from token A’s
residual stream into token B’s

residual stream. r

Token A Token B
residual stream residual stream

Embeddings and Such

* A token embedding is a vector of dimension d that will be the
initial representation for the input token.

* As the vector is passed up through the transformer layers in
the residual stream, this embedding representation will change
and grow, incorporating context and playing a different role
depending on the kind of language model we are building

4/15/24

Embeddings and Such

* Given an input token string like “thanks for all the” the transformer
architecture first convert the tokens into vocabulary indices.

* Let V be the vocabulary and | V| be the size of V.

* Let E be the embedding matrix.

* The representation of “thanks for all the” might be
w =[5, 4000, 10532, 2224].

* We treat the values of w as indices to corresponding
rows from E, (row 5, row 4000, row 10532, row 2224).

VI

One hot-hot-hot vector

* In a one-hot vector all the elements are 0 except for one, the element
whose dimension is the word’s index in the vocabulary.

* If the word “thanks” has index 5 in the vocabulary, then x; =1, and all
other x; =0

[0 000100 ... 000 O]
1234567 |V]|

10

4/15/24

Selecting the token embedding

5 V| 5 d
1 Doodibo—oooe] X E = 13

VI

Multiplying E by a one-hot vector that has only one non-zero element x; =
1 simply selects the relevant row vector for word i, resulting in the
embedding for word i.

Storing all of the N input tokens

\ d
000010...0000

0000000 __oollo _
1/000000...0000 X E -

N [coodibo_oo000

VI

To represent the entire token sequence, we multiply all N one-hot
vectors with E.

11

4/15/24

Positions

* While the order in which the N tokens are inserted represents word
order, this is not sufficient.

* Recall that attention heads can move tokens around.

* We wish to associate with each word the order in which it appeared
in the text.

* As such, we combine these token embeddings with positional
embeddings specific to each position in an input sequence.

Positions

(Transformer Block]

(word + position) i é
®» <P ®
Word S
Embeddings |2
Position &

Embeddings
Janet will back the bill

X = Composite
Embeddings g

(1ouer)

(e _
@ =
)

Combining word embeddings with positions.

12

4/15/24

Positions

* The positions are absolute.

* However, we do not simply use integers.

* Instead, we start with randomly initialized embeddings corresponding
to each possible input position up to some maximum length.

* For example, just as we have an embedding for the word fish, we will
have an embedding for the position 3.

Positions

* As with word embeddings, these positional embeddings are learned
along with other parameters during training.

* We can store them in a matrix £, of shape [1 x N].

* The individual token and position embeddings are both of size [1xd],
so their sum is also [1 x d]

* To produce an input embedding that captures positional information,
we just add the word embedding for each input to its corresponding
positional embedding.

* This new embedding serves as the input for further processing.

13

