9/5/20

Constraint
Satisfaction

Real-world problems

Scheduling

Building design

Planning
Optimization/satisfaction
VLSI design

Maximizing GPA
Registering for classes
Sudoku

Crossword puzzles

Sudoku as CSP

53 7
6 1/9/|5
98 6
8 6 3
4 8 3 1
7 2 6
6 2|8
4119 5
8 719

Constraints:

fill a 9x9 grid with digits 1-9
each column contains all
digits from 1-9

each row contains all digits
from 1-9

each box contains all digits
from 1-9

Sudoku as CSP

« Consider the red cell.
It cannot have the values 5,

3 or 7 because those already
appear in that row.

It cannot have the value 8,
because it already appears in
that column.

It cannot have the values 5,
3, 6, 9 or 8 because they
already appear in the box.
This leaves the following
values that are still
consistent with the
constraints: 1, 2, 4 and 7.

s3Il |7
6 1/9]5
98 6
8 6 3
4 8| [3 1
7 2 6
6 2/8
4119 5
8 719

9/5/20

Sudoku as CSP

+ When it comes to solving Sudoku | § | 3 .
problems, there are several
strategies for picking cells and 6 1/19/5
numbers. 98 6

+ Most of us will not just pick a
random number from the set of
remaining values, i.e. 1, 2, 4 and
7 of the red cell.

» However, a computer is fast and
can effectively and super- 6 218
efficiently solve Sudoku problems
by picking a random number. 4

« We will explore that strategy, 8 719
called backtracking search in the
remainder of these slides

N

(0]
()]
w

AN
(00]
w
—

N
N
(0)}

=
\o}
ul

Formal Definition of CSP

A constraint satisfaction problem (CSP) consists of
° a set of variables X = {x;, x,, ..., X}
° each with an associated domain of values {d,, d,, ..., d,}.
> the domains are typically finite
° a set of constraints {c,, ¢,, ..., ¢,} where

o each constraint defines a predicate which is a relation
over a particular subset of X.

> e.g., C;involves variables {X;;, X, ..., X;} and defines the
relation Ri & D;; x D;; X ... Dy

9/5/20

9/5/20

Goals of CSP

An instantiation of a subset of variables S is an assignment
of a legal domain value to each variable in S

An instantiation is legal iff it does not violate any (relevant)
constraints.

A solution is an instantiation of all of the variables in the
problem.

CSP as a Search Problem

* States are defined by the values assigned so far

¢ Initial state: the empty assignment { }

* Successor function: assign a value to an unassigned
variable that does not conflict with current assignment
(fail if no legal assignments)

* Goal test: the current assignment is complete

* Every solution appears at depth n with n
variables

* Pathisirrelevant

9/5/20

Backtracking Search

1. Consider the variables in some order

2. Pick an unassigned variable and give it a provisional
value such that it is consistent with all of the
constraints

3. If no such assignment can be made, we have
reached a dead end and need to backtrack to the
previous variable

4. Continue this process until a solution is found or we
backtrack to the initial variable and have exhausted
all possible values

Backtracking Example: Sudoku

« Consider the Sudoku problem
on the right

 Let assign variables (or cell
values) by row, left to right.

3
0
0
8
4
6
0
0
9

1 O O O O OO OO
O O O JO wo o o
O b O O o0 OO wo
W Rk OO O OO o N
O 0O OO Wwo o+ o
O O JdJ B O oy OO O
_ O O O O O O O
S O O 0 I DN o o w

Backtracking Example: Sudoku

gg

« We begin by
setting the value
of cell <0,2>to 1

* Notice that 1 is
consistent with the
row, column and
box constraints

« We then set the
value of cell
<0,3> to 5.

« The algorithm will
begin with 1, but
notice that 1 is not
consistent, neither
are 2, 3 and 4.

O O Oy OO O W
O O O O OO O o
O O J O WO o
D O O 0 OO W U'I_
P O O O O O o N -
W OO WO O
O JdJ = O oy © O O'
O O O O OO O o
O O 00 JdJ DN O Opo

Backtracking Example: Sudoku

]

« Next, we set cell
<0,5> to 4, again,
we start with 1,
but realize that 1,
2 and 3 are
violating row,
column and box
constraints

» We then look at
cell <0,6>.

« Asit turns out all
values from 1-9
violate some
constraint.

* We now

O O O 0O O O W
O O OO OO OO
OO J O W o o+
S O O 0 OO W Lﬂ‘
R O O O O O o N-
0 O O W o oK >
O Jd 0 O oy OO O.
O OO O O O Ogo
O O 00 JdI DN O Ooo

9/5/20

Backtracking Example: Sudoku

gg

 Specifically, we
undo the
assignment of the
value 4 to cell
<0,5>.

» However our
algorithm does not
reconsider values
1-4, instead it
continues to go
up.

« In other words,
we try to assign 5
to cell <0,5>.

* However, we

O O Oy OO O W
O O O O OO O o
O O J O WO o
D O O 0 OO W U'I_
P O O O O O o N -
W OO WO O
O JdJ = O oy © O O'
O O O O OO O o
O O 00 JdJ DN O Opo

Backtracking Example: Sudoku

« The digit 6 already
exists in the box. @ 5 @
+ However, 7 is fine o e
and that is the °
number we will
assign to cell <0,5>
* We now move to the
next cell, cell <0,6>
 This time, just like in
the movie Groundhog
day, we start from 0.
» We find that while 1-
3 violate constraints,
4 is fine.

[¢]

O 0O O W
OO0 OO0 O »
O J O WwWwo o
OO0 OO WU
OO WO O R I
4= O o0y O O
© 0o oo oW
ooo\lmooa[o

9/5/20

9/5/20

Backtracking search algorithm

function BACKTRACKING-SEARCH(¢sp) returns a solution, or failure
return RECURSIVE-BACKTRACKING({}, csp)

function RECURSIVE-BACKTRACKING(assignment,csp) returns a solution, or
failure
if assignment is complete then return assignment
var < SELECT- UNASSIGNED- VARIABLE(Variables[csp), assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
if wvalue is consistent with assignment according to Constraints[csp] then
add { var = value } to assignment
result «+— RECURSIVE- BACKTRACKING(assignment, csp)
if result # failue then return result
remove { var = value } from assignment
return failure

