
9/5/20

1

Constraint	
Satisfaction

Real-world	problems
Scheduling

Building	design

Planning

Optimization/satisfaction

VLSI	design

Maximizing	GPA

Registering	for	classes

Sudoku

Crossword	puzzles



9/5/20

2

Sudoku	as	CSP

Image source: https://en.wikipedia.org/wiki/Sudoku

Constraints:
• fill a 9×9 grid with digits 1-9
• each column contains all 

digits from 1-9 
• each row contains all digits 

from 1-9 
• each box contains all digits 

from 1-9 

Sudoku	as	CSP
• Consider the red cell.

• It cannot have the values 5, 
3 or 7 because those already 
appear in that row.

• It cannot have the value 8, 
because it already appears in 
that column.

• It cannot have the values 5, 
3, 6, 9 or 8 because they 
already appear in the box.

• This leaves the following 
values that are still 
consistent with the 
constraints: 1, 2, 4 and 7.



9/5/20

3

Sudoku	as	CSP
• When it comes to solving Sudoku 

problems, there are several 
strategies for picking cells and 
numbers.

• Most of us will not just pick a 
random number from the set of 
remaining values, i.e. 1, 2, 4 and 
7 of the red cell. 

• However, a computer is fast and 
can effectively and super-
efficiently solve Sudoku problems 
by picking a random number.

• We will explore that strategy, 
called backtracking search in the 
remainder of these slides

Formal	Definition	of	CSP
A	constraint	satisfaction	problem	(CSP)	consists	of
◦ a	set	of	variables	X	=	{x1,	x2,	…,	xn}
◦ each	with	an	associated	domain	of	values	{d1,	d2,	…,	dn}.
◦ the	domains	are	typically	finite

◦ a	set	of	constraints	{c1,	c2,	…,	cm}	where
◦ each	constraint	defines	a	predicate	which	is	a	relation	
over	a	particular	subset	of	X.

◦ e.g.,	Ci involves	variables	{Xi1,	Xi2,	…,	Xik}	and	defines	the	
relation	Ri⊆ Di1 x	Di2 x	…	Dik



9/5/20

4

Goals	of	CSP
An	instantiation	of	a	subset	of	variables	S	is	an	assignment	
of	a	legal	domain	value	to	each	variable	in	S

An	instantiation	is	legal	iff it	does	not	violate	any	(relevant)	
constraints.

A	solution	is	an	instantiation	of	all	of	the	variables	in	the	
problem.

CSP	as	a	Search	Problem
• States	are	defined	by	the	values	assigned	so	far
• Initial	state:	the	empty	assignment	{	}
• Successor	function:	assign	a	value	to	an	unassigned	

variable	that	does	not	conflict	with	current	assignment	
(fail	if	no	legal	assignments)

• Goal	test:	the	current	assignment	is	complete

• Every	solution	appears	at	depth	n with	n
variables

• Path	is	irrelevant



9/5/20

5

Backtracking	Search
1. Consider	the	variables	in	some	order
2. Pick	an	unassigned	variable	and	give	it	a	provisional	

value	such	that	it	is	consistent	with	all	of	the	
constraints

3. If	no	such	assignment	can	be	made,	we	have	
reached	a	dead	end	and	need	to	backtrack	to	the	
previous	variable

4. Continue	this	process	until	a	solution	is	found	or	we	
backtrack	to	the	initial	variable	and	have	exhausted	
all	possible	values

Backtracking	Example:	Sudoku
3 6 0 0 2 0 0 8 9
0 0 0 3 6 1 0 0 0
0 0 0 0 0 0 0 0 0
8 0 3 0 0 0 6 0 2
4 0 0 6 0 3 0 0 7
6 0 7 0 0 0 1 0 8
0 0 0 0 0 0 7 0 0
0 0 0 4 1 8 0 0 0
9 7 0 0 3 0 0 1 4

• Consider the Sudoku problem 
on the right

• Let assign variables (or cell 
values) by row, left to right.



9/5/20

6

Backtracking	Example:	Sudoku

3 6 1 5 2 4 0 8 9
0 0 0 3 6 1 0 0 0
0 0 0 0 0 0 0 0 0
8 0 3 0 0 0 6 0 2
4 0 0 6 0 3 0 0 7
6 0 7 0 0 0 1 0 8
0 0 0 0 0 0 7 0 0
0 0 0 4 1 8 0 0 0
9 7 0 0 3 0 0 1 4

1
1,2,3,4,5 

1,2,3,4 

1,2,3,4,5
,6,7,8,9

• We begin by 
setting the value 
of cell <0,2> to 1

• Notice that 1 is 
consistent with the 
row, column and 
box constraints

• We then set the 
value of cell 
<0,3> to 5. 

• The algorithm will 
begin with 1, but 
notice that 1 is not 
consistent, neither 
are 2, 3 and 4. 

Backtracking	Example:	Sudoku

3 6 1 5 2 4 0 8 9
0 0 0 3 6 1 0 0 0
0 0 0 0 0 0 0 0 0
8 0 3 0 0 0 6 0 2
4 0 0 6 0 3 0 0 7
6 0 7 0 0 0 1 0 8
0 0 0 0 0 0 7 0 0
0 0 0 4 1 8 0 0 0
9 7 0 0 3 0 0 1 4

1
1,2,3,4,5 

1,2,3,4 

1,2,3,4,5
,6,7,8,9

• Next, we set cell 
<0,5> to 4, again, 
we start with 1, 
but realize that 1, 
2 and 3 are 
violating row, 
column and box 
constraints

• We then look at 
cell <0,6>.

• As it turns out all 
values from 1-9 
violate some 
constraint.

• We now 
backtrack.



9/5/20

7

Backtracking	Example:	Sudoku

3 6 1 5 2 4 0 8 9
0 0 0 3 6 1 0 0 0
0 0 0 0 0 0 0 0 0
8 0 3 0 0 0 6 0 2
4 0 0 6 0 3 0 0 7
6 0 7 0 0 0 1 0 8
0 0 0 0 0 0 7 0 0
0 0 0 4 1 8 0 0 0
9 7 0 0 3 0 0 1 4

1
1,2,3,4,5 

1,2,3,4 

1,2,3,4,5
,6,7,8,9

• Specifically, we 
undo the 
assignment of the 
value 4 to cell 
<0,5>.

• However our 
algorithm does not 
reconsider values 
1-4, instead it 
continues to go 
up. 

• In other words, 
we try to assign 5 
to cell <0,5>.

• However, we 
already have 5 in 
the first row.

Backtracking	Example:	Sudoku

3 6 1 5 2 7 4 8 9
0 0 0 3 6 1 0 0 0
0 0 0 0 0 0 0 0 0
8 0 3 0 0 0 6 0 2
4 0 0 6 0 3 0 0 7
6 0 7 0 0 0 1 0 8
0 0 0 0 0 0 7 0 0
0 0 0 4 1 8 0 0 0
9 7 0 0 3 0 0 1 4

1

1,2,3,4,5 

1,2,3,4,5,6,7 

1,2,3,4

• The digit 6 already 
exists in the box.

• However, 7 is fine 
and that is the 
number we will 
assign to cell <0,5>

• We now move to the 
next cell, cell <0,6>

• This time, just like in 
the movie Groundhog 
day, we start from 0. 

• We find that while 1-
3 violate constraints, 
4 is fine.



9/5/20

8

Backtracking	search	algorithm

Algorithm source: Russell and Norvig: AIMA, 2nd Edition, p 142


