
3/5/24

1

Efficient
Constraint	
Satisfaction
MICHAEL	WOLLOWSKI

Forward	checking
Inference	can	be	very	powerful	in	the	course	of	a	search.

Every	time	we	make	a	choice	of	a	value	for	a	variable,	we	
have	an	opportunity	to	infer	new	domain	reductions	on	the	
neighboring	variables.

One	of	the	simplest	forms	of	inference	is	called	forward	
checking:	
◦ Whenever	a	variable	X	is	assigned,	the	forward-checking	
process	establishes	consistency	for	it:	for	each	unassigned	
variable	Y	that	is	connected	to	X	by	a	constraint,	delete	
from	Y's	domain	any	value	that	is	inconsistent	with	the	
value	chosen	for	X.



3/5/24

2

Constraint	Graphs
Before	looking	at	forward	checking,	let’s	look	at	a	simple	
example.

Consider	the	following	CSP:
◦ Four	variables:	X,	Y,	Z,	T
◦ Domains	for	each	variable:	{1,	2,	3}
◦ Constraints:	
◦ X	<	Y	
◦ Y	=	Z
◦ T	<	Z
◦ X	<	T

Constraint	Graph
Here	are	the	constraints	draw	in	a	constraint	graph.

Let’s	begin	by	solving	the	problem	with	plain	backtracking.

We	will	solve	it	in	following	order:	

X,	Y,	Z,	T

<

1,	2,	3 1,	2,	3

1,	2,	3 1,	2,	3

<

< =

X Y

T Z



3/5/24

3

Solving	a	Constraint	Graph	with	
Backtracking
We	will	pick	1	for	X

We	then	start	with	1	for	Y	but	that	violates	the	X<Y	constraint.

So	we	will	pick	2

<

1,	2,	3 1,	2,	3

1,	2,	3 1,	2,	3

<

< =

X Y

T Z

Solving	a	Constraint	Graph	with	
Backtracking
We	will	try	1	for	Z,	but	that	violates	the	Y=Z	constraint.

We	will	pick	2.

We	then	try	1	for	T,	this	assignment	satisfies	the	T<Z	constraint.

<

1,	2,	3 1,	2,	3

1,	2,	3 1,	2,	3

<

< =

X Y

T Z



3/5/24

4

Solving	a	Constraint	Graph	with	
Backtracking
We	then	check	the	X<T	constraint	and	realize	that	it	is	not	satisfied.	

We	try	the	value	2	for	T	but	that	does	not	satisfy	the	T<Z	constraint,	
neither	does	3	for	T.	

We	backtrack	to	Z.

<

1,	2,	3 1,	2,	3

1,	2,	3 1,	2,	3

<

< =

X Y

T Z

Solving	a	Constraint	Graph	with	
Backtracking
At	Z,	we	try	the	value	3,	but	that	violates	the	Y=Z	constraint.

We	backtrack	to	Y.

There	we	select	3.

We	then	advance	to	Z.

<

1,	2,	3 1,	2,	3

1,	2,	3 1,	2,	3

<

< =

X Y

T Z



3/5/24

5

Solving	a	Constraint	Graph	with	
Backtracking
At	Z,	we	try	1	and	2	but	they	violate	the	Y=Z	constraint.

Hence	we	assign	3	to	Z.

We	move	to	T	and	pick	1,	it	satisfies	the	T<Z	constraint.

<

1,	2,	3 1,	2,	3

1,	2,	3 1,	2,	3

<

< =

X Y

T Z

Solving	a	Constraint	Graph	with	
Backtracking
Now	we	check	the	X<T	constraint	and	it	is	violated.

We	assign	2	to	T.

It	satisfies	the	X<T	and	the	T<Z	constraint.

We	found	a	solution.

<

1,	2,	3 1,	2,	3

1,	2,	3 1,	2,	3

<

< =

X Y

T Z



3/5/24

6

Solving	a	Constraint	Graph	with	
Forward	Checking
Now	we	will	solve	the	CG	with	forward	checking.	

We	will	use	the	same	order	of	variables.

We	begin	by	selecting	1	for	X.

Using	forward	checking,	we	will

eliminate	values	from	the

domains	of	Y	and	T	as	

indicated	in	red.
<

1,	2,	3 1,	2,	3

1,	2,	3 1,	2,	3

<

< =

X Y

T Z

Solving	a	Constraint	Graph	with	
Forward	Checking
Next,	we	assign	2	to	Y	and	apply	forward	checking.

This	eliminates	1	and	3	from	the	domain	of	Z.

It	eliminates	2	and	3	from	X

<

1,	2,	3 1,	2,	3

1,	2,	3 1,	2,	3

<

< =

X Y

T Z



3/5/24

7

Solving	a	Constraint	Graph	with	
Forward	Checking
Next,	we	select	the	only	remaining	value	for	Z.

We	apply	forward	checking	and	remove	2	and	3	from	the	domain	of	T.

We	remove	3	from	Y.

At	T,	we	need	to	backtrack.

<

1,	2,	3 1,	2,	3

1,	2,	3 1,	2,	3

<

< =

X Y

T Z

Solving	a	Constraint	Graph	with	
Forward	Checking
We	also	need	to	backtrack	at	Z.

<

1,	2, 3 1,	2,	3

1,	2,	3 1,	2,	3

<

< =

X Y

T Z



3/5/24

8

Solving	a	Constraint	Graph	with	
Forward	Checking
We	pick	3	for	Y	and	perform	forward	checking	on	X	and	Z

<

1,	2,	3 1,	2,	3

1,	2,	3 1,	2,	3

<

< =

X Y

T Z

Solving	a	Constraint	Graph	with	
Forward	Checking
We	now	select	3	for	Z	and	perform	forward	checking	on	T.

<

1,	2,	3 1,	2,	3

1,	2,	3 1,	2,	3

<

< =

X Y

T Z



3/5/24

9

Solving	a	Constraint	Graph	with	
Forward	Checking
We	select	2	for	T.

We	have	found	a	consistent	solution.

<

1,	2,	3 1,	2,	3

1,	2,	3 1,	2,	3

<

< =

X Y

T Z

Arc	Consistency
A	variable	in	a	CSP	is	arc-consistent	if	every	value	in	its	domain	satisfies	
the	variable's	binary	constraints.		

More	formally,	an	arc	(X,	Y)	is	arc-consistent if,	for	every	value	x of	X,	
there	is	a	value	y for	Y that	satisfies	the	constraint	represented	by	the	
arc.

A	graph	is	arc-consistent	if	all	arcs	are	arc-consistent.

To	create	arc	consistency,	we	perform	constraint	propagation:	that	is,	
we	repeatedly	reduce	the	domain	of	each	variable	to	be	consistent	with	
its	arcs.

Notice	that	while	in	forward	checking,	we	only	look	at	a	variables	
immediate	neighbors,	constraint	propagation	looks	at	the	transitive	
closure	of	all	neighbors.	



3/5/24

10

Arc	Consistency
We	will	now	solve	the	problem	below	with	constraint	propagation.	

<

1,	2,	3 1,	2,	3

1,	2,	3 1,	2,	3

<

< =

X Y

T Z

Arc	Consistency
Notice	that	we	begin	by	constraint	propagation.

In	other	words,	we	do	NOT	begin	by	selecting	a	value	for	X.

<

1,	2,	3 1,	2,	3

1,	2,	3 1,	2,	3

<

< =

X Y

T Z



3/5/24

11

Arc	Consistency
Here	is	the	graph	with	all	constraints	enforced.

I	will	leave	it	as	an	exercise	to	you	to	figure	out	how	we	got	here.

For	this	particular	example,

we	can	now	read	off	a

solution.

<

1,	2,	3 1,	2,	3

1,	2,	3 1,	2,	3

<

< =

X Y

T Z

Constraint	Propagation
The	most	popular	algorithm	for	arc	consistency	is	called	AC-3

To	make	every	variable	arc-consistent,	the	AC-3	algorithm	maintains	a	
queue	of	arcs	to	consider.	

(Actually,	the	order	of	consideration	is	not	important,	so	the	data	
structure	is	really	a	set,	but	tradition	calls	it	a	queue.)

Initially,	the	queue	contains	all	the	arcs	in	the	CSP.	

(Each	binary	constraint	becomes	two	arcs,	one	in	each	direction.)			

AC-3	then	pops	off	an	arbitrary	arc	(Xi,	Xj)	from	the	queue	and	makes	Xi
arc-consistent	with	respect	to	Xj.	



3/5/24

12

Arc	Consistency
If	this	leaves	Di unchanged,	the	algorithm	just	moves	on	to	the	next	arc.		

But	if	this	revises	Di (makes	the	domain	smaller),	then	we	add	to	the	
queue	all	arcs	(Xk,	Xi)	where	Xk is	a	neighbor	of	Xi.	

We	need	to	do	that	because	the	change	in	Di	might	enable	further	
reductions	in	the	domains	of	Dkeven	if	we	have	previously	considered	
Xk.	

If	Di is	revised	down	to	nothing,	then	we	know	the	whole	CSP	has	no	
consistent	solution,	and	AC-3	can	immediately	return	failure.	

Arc	Consistency
Otherwise,	we	keep	checking,	trying	to	remove	values	from	the	
domains	of	variables	until	no	more	arcs	are	in	the	queue.

At	that	point,	we	are	left	with	a	CSP	that	is	equivalent	to	the	original	
CSP-they	both	have	the	same	solutions-but	the	arc-consistent	CSP	will	
in	most	cases	be	faster	to	search	because	its	variables	have	smaller	
domains.



3/5/24

13

Arc	consistency	algorithm	AC-3

Time	complexity:	O(nd3),	where	n is	the	number	of	arcs	and	d is	the	
maximum	size	of	a	domain.

Algorithm source: Russell and Norvig: AIMA, 2nd Edition, p 146

Constraint	Propagation
Interleave	constraint	propagation	and	backtracking	search.

Solve: 

Do constraint propagation until no values change 

If not solved: 

Save state to stack 

Pick a variable and a value, assign it

Make recursive call to solve

If success, return

If not, restore old state and pick the next value



3/5/24

14

Inference
• Consider the Sudoku columns at right.
• Looking at it, we can eliminate some of 

the numbers from some of the domains.
• This would be accomplished by inference.
• If we look at the 4th and 5th cell from the 

top, either can only have a value of 1 or 
6. 

• This means that one of those cells will 
end up having a value of 1 and the other 
one will have a value of 6.

• This also means that we can eliminate 1 
and 6 from the domains of all other cells.

• This is shown in red in the right-most 
column. 

Inference

• Looking at the column, there is only one 
8 left, in the top cell. 

• We will eliminate 3 and 4 from the top 
cell, leaving the top cell with just the 
value 8.


