Efficient Constraint Satisfaction

MICHAEL WOLLOWSKI

Forward checking

Inference can be very powerful in the course of a search.

Every time we make a choice of a value for a variable, we have an opportunity to infer new domain reductions on the neighboring variables.

One of the simplest forms of inference is called **forward checking**:

• Whenever a variable X is assigned, the forward-checking process establishes consistency for it: for each unassigned variable Y that is connected to X by a constraint, delete from Y's domain any value that is inconsistent with the value chosen for X.

Constraint Graphs

Before looking at forward checking, let's look at a simple example.

Consider the following CSP:

- Four variables: X, Y, Z, T
- Domains for each variable: {1, 2, 3}
- Constraints:
 - X < Y
 - Y = Z
 - T < Z
 - X < T

Solving a Constraint Graph with Forward Checking

<section-header><text><text><text><text><text><text>

Arc Consistency

If this leaves D_i unchanged, the algorithm just moves on to the next arc.

But if this revises D_i (makes the domain smaller), then we add to the queue all arcs (X_{kr}, X_i) where X_k is a neighbor of X_i .

We need to do that because the change in D_i might enable further reductions in the domains of D_k even if we have previously considered X_k .

If D_i is revised down to nothing, then we know the whole CSP has no consistent solution, and AC-3 can immediately return failure.

Arc Consistency

Otherwise, we keep checking, trying to remove values from the domains of variables until no more arcs are in the queue.

At that point, we are left with a CSP that is equivalent to the original CSP-they both have the same solutions-but the arc-consistent CSP will in most cases be faster to search because its variables have smaller domains.

Inference	3,4,6,8	3,4 <mark>,6</mark> ,8
 Consider the Sudoku columns at right. Looking at it, we can eliminate some of 	1,3,4,7	1 ,3,4,7
 the numbers from some of the domains. This would be accomplished by inference. 	2	2
 If we look at the 4th and 5th cell from the top, either can only have a value of 1 or 	1,6	1, 6
6.This means that one of those cells will	1,6	1,6
end up having a value of 1 and the other one will have a value of 6.	5	5
• This also means that we can eliminate 1 and 6 from the domains of all other cells.	9	9
 This is shown in red in the right-most column. 	3,4,6	3,4, <mark>6</mark>
	1,4,6,7	1,4, <mark>6</mark> ,7

Interence	3,4, <mark>6</mark> ,8	3,4,6,8
 Looking at the column, there is only one 8 left, in the top cell. We will eliminate 3 and 4 from the top cell, leaving the top cell with just the value 8. 	1,3,4,7	1 ,3,4,7
	2	2
	1, 6	1, 6
	1,6	1,6
	5	5
	9	9
	3,4, <mark>6</mark>	3,4, <mark>6</mark>
	1,4, <mark>6</mark> ,7	1,4, <mark>6</mark> ,7