
4/1/24

1

Long-short	Term	Memory	NN
Attention
MICHAEL	WOLLOWSKI

SUMMARY	OF	CHAPTER	9: 	RNNS	AND	LSTMS	

FROM:	SPEECH	AND	LANGUAGE	PROCESSING. 	

BY	 JURAFSKY AND	MARTIN. 	HTTPS://WEB.STANFORD.EDU/~JURAFSKY/SLP3/

Long-Short	Term	Memory	(LSTM)	Nets
RNNs	are	pretty	powerful.

However,	they	have	a	drawback.

Consider	the	statement:	“The	flights	the	airline	was	cancelling	were	full.”	

What	does	“was”	refer	to?
◦ ”airline”	i.e.	the	prior	word

What	doe	“were”	refer	to?
◦ “flights”	i.e.	a	word	much	earlier	in	the	sentence



4/1/24

2

Long-Short	Term	Memory	(LSTM)	Nets
The	recurrent	units	of	an	RNN	carry	state	information.

By	this	we	mean	that	they	can	“remember”	information	that	may	be	useful	for	
processing	the	next	or	next	few	pieces	of	input.

Think	about	the	task	of	predicting	the	next	word.

This	depends	on	the	prior	few	words.

The	“challenge”	is	that	it	has	to	remember	data:
◦ from	the	recent	past	as	well	as	
◦ potentially	from	the	more	distant	past.

Long-Short	Term	Memory	(LSTM)	Nets
To	address	this	problem,	more	complex	units	were	developed.

Those	units	are	designed	to	explicitly	manage	context

As	such,	they	have	two	inputs:	
◦ the	data	pushed	through	the	network	and	
◦ context	data,	maintained	by	the	network.

In	Long	short-term	memory	(LSTM)	networks	the	units	are	designed	to:
◦ remove	information	that	is	no	longer	needed	from	the	context,	and	
◦ adding	information	likely	to	be	needed	for	later	decision	making.	



4/1/24

3

Long-Short	Term	Memory	(LSTM)	Nets
The	units	use	of	gates	to	control	the	flow	of	information	into	and	out	of	the	
units.

These	gates	are	implemented	through	the	use	of	additional	weights	that	operate	
sequentially	on	the	input,	the	previous	hidden	layer	and	the	previous	context	
layers.	

LSTM	Units	in	Detail
Let’s	zoom	in	and	talk	about	some	detail.

Btw.	the	images	are	from	the	fabulous	blog	
entry	referenced	below.

Image	source:	http://colah.github.io/posts/2015-08-Understanding-LSTMs/



4/1/24

4

Image	source:	https://towardsdatascience.com/lstm-recurrent-neural-networks-how-to-teach-a-network-to-remember-the-past-55e54c2ff22e

Clarification	on	RNN
The	diagram	suggests	that	
the	hidden	layer	
information	is	made	
available	to	the	next	unit.

This	is	incorrect.

The	diagram	is	unfolded	in	
time.

It	makes	the	unrealistic	
assumption	that	we	only	
have	one	input	word.

Image	source:	Speech	and	Language	Processing.	Daniel	Jurafsky &	James	H.	Martin.	Draft	of	February	3,	2024.	



4/1/24

5

Clarification	on	RNNs

Image	source:	https://medium.com/@humble_bee/rnn-recurrent-neural-networks-lstm-842ba7205bbf

Here	is	an	RNN	with	three	
input	nodes.	

Notice	that	the	hidden	
layers	info	is	not	shared.

Recall	that	the	recurrent	
input	to	a	node	is	simply	
the	prior	output.

Hence	a	fairly	myopic	
memory.

Long-Short	Term	Memory	(LSTM)	Nets
Below	is	an	LSTM	unit	shown	in	time.

Notice	the	input	xt,	output	ht context	(upper	arrows)	and	hidden	state	(lower	
arrows)

Image	source:	http://colah.github.io/posts/2015-08-Understanding-LSTMs/



4/1/24

6

LSTM	Units	in	Detail
Let’s	have	a	look	at	the	context	
data.
Early	on,	the	unit	performs	
multiplication	on	context	vector	C
and	soon	afterwards	the	unit	
performs	addition	on	it.
The	first	operation	is	designed	to	
remove	data	from	the	context	
vector.
The	second	operation	is	designed	to
add	data	to	the	context	vector.

Image	source:	http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM	Units	in	Detail
Let’s	have	a	look	at	how	to	“remove”	from	
the	context	vector.
At	first,	the	unit	concatenates	the	input	
and	hidden	state	vectors.
Using	the	weights	and	resulting	vector,	the	
unit	calculates	the	weighted	sum	of	its	
inputs	and	runs	it	through	a	sigmoid	
function	to	produce	a	vector	f.
This	is	called	the	forget	gate.
Vector	f is	multiplied	with	vector	C.
As	such	f	acts	as	a	mask,	zeroing	out	
information	that	should	be	forgotten	and	
keeping	information	that	should	be	kept.

Image	source:	http://colah.github.io/posts/2015-08-Understanding-LSTMs/



4/1/24

7

LSTM	Units	in	Detail
Let’s	have	a	look	at	how	to	“add”	to	the	
context	vector.

Using	a	separate	sigmoid	activation	
function,	the	unit	determines	which	
values	to	update.

This	is	called	the	input	gate.

Next,	a	tanh activation	function	creates	a	
vector	of	new	candidate	values.

Image	source:	http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM	Units	in	Detail
Next,	perform	multiplication	on	the	
vector	produced	by	the	input	gate	and	
the	candidate	values	produced	by	tanh.

As	with	the	forget	gate,	the	output	
vector	produced	by	the	sigmoid	function	
acts	as	a	mask.

The	resulting	vector	is	added	to	the	
context	vector.

Image	source:	http://colah.github.io/posts/2015-08-Understanding-LSTMs/



4/1/24

8

LSTM	Units	in	Detail
We	are	done	with	maintaining	the	context.

Next,	let	us	have	a	look	at	calculating	the	output	
and	updated	hidden	state.

The	output	gate	is	used	to	decide	what	data	is	
required	for	the	current	hidden	state.

Using	yet	another	sigmoid	activation	function,	
the	unit	determines	which	values	are	relevant.

Before	using	the	sigmoid	function	as	a	mask	on	
the	context	vector,	the	unit	runs	it	through	tanh.

This	is	necessary	because	the	addition	to	the	
context	vector	may	have	produces	values	outside	
of	the	range	[-1	..	1]

Image	source:	http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTMs	– A	different	perspective
On	the	next	slide,	you	see	an	image	of	an	LSTM	unit.

It	highlights	the	matrices	used	for	running	it.

As	you	may	imagine	the	more	matrices,	the	more	weights	that	need	to	be	
learned,	the	more	computing	time	it	takes	to	train	the	network.



4/1/24

9

Image	source:	Jurafsky &	Martin,	Speech	and	Language	Processing.	3rd Ed.,	Draft	of	January	21,	2022.	

Review	of	NN	units

Image	source:	Jurafsky &	Martin,	Speech	and	Language	Processing.	3rd Ed.,	Draft	of	January	12,	2022.	

On	the	right,	you	see	
units	and	the	sort	of	
input	they	take.	



4/1/24

10

Common	RNN
NLP	Architectures

Image	source:	Speech	and	Language	Processing.	Daniel	Jurafsky &	James	H.	Martin.	Draft	of	February	3,	2024.	

Encoder-Decoder
Also	called	sequence-to-sequence	network

Used	when	an	input	sequence	is	to	be	translated	to	an	output	sequence	that	is	of	a	different	
length	than	the	input,	and	does	not	align	with	it	in	a	word-to-word	way.	
Example:	machine	translation,	where	the	input	sequence	and	output	sequence	can	have	
different	lengths

Image	source:	Speech	and	Language	Processing.	Daniel	Jurafsky &	James	H.	Martin.	Draft	of	February	3,	2024.	



4/1/24

11

Encoder-Decoder
Encoder	network	that	takes	an	input	sequence	and	
creates	a	contextualized	representation	of	it,	called	the	context.	

Encoder-decoder	networks	consist	of	three	conceptual	components:	

1. An	encoder	that	accepts	an	input	sequence,	x1:n,	and	generates	a	corresponding	sequence	of	
contextualized	representations,	h1:n.	

2. A	context	vector,	c,	which	is	a	function	of	h1:n,	and	conveys	the	essence	of	the	input	to	the	
decoder.	

3. A	decoder,	which	accepts	c	as	input	and	generates	an	arbitrary	length	sequence	of	hidden	
states	h1:m,	from	which	a	corresponding	sequence	of	output	states	y1:m,	can	be	obtained.	

LSTMs,	convolutional	networks,	and	transformers	can	all	be	employed	as	encoders	or	decoders.	

Image	source:	Speech	and	Language	Processing.	Daniel	Jurafsky &	James	H.	Martin.	Draft	of	February	3,	2024.	

Translation	with	a	
Basic	RNN	version

Image	source:	Speech	and	Language	Processing.	Daniel	Jurafsky &	James	H.	Martin.	Draft	of	February	3,	2024.	

We	use	<s>	for	the	sentence	
separator	token.
We	wish	to	translate	the	English	
source	text	“the	green	witch	
arrived”
to	a	Spanish	sentence	“llego	́	la	
bruja	verde”	
The	latter	can	be	glossed	word-by-
word	as	‘arrived	the	witch	green’.	



4/1/24

12

Translation	with	a	
Basic	RNN	version

Then	we	begin	autoregressive	generation,	asking	for	a	word	in	the	context	of	the	
hidden	layer	from	the	end	of	the	source	input	as	well	as	the	end-of-sentence	
marker.	

Subsequent	words	are	conditioned	on	the	previous	hidden	state	and	the	
embedding	for	the	last	word	generated.	

Image	source:	Speech	and	Language	Processing.	Daniel	Jurafsky &	James	H.	Martin.	Draft	of	February	3,	2024.	

To	translate	a	source	text,	we	run	it	
through	the	network	performing	
forward	inference	to	generate	
hidden	states	until	we	get	to	the	end	
of	the	source.	

A	Closer	Look	at	the	Basic	RNN	version

Image	source:	Speech	and	Language	Processing.	Daniel	Jurafsky &	James	H.	Martin.	Draft	of	February	3,	2024.	

The	prior	figure	shows	only	a	
single	network	layer	for	the	
encoder.
Stacked	architectures	are	the	
norm.
The	output	states	from	the	top	
layer	of	the	stack	are	taken	as	the	
final	representation.
The	encoder	consists	of	stacked	biLSTMs where	the	hidden	states	from	top	layers	from	
the	forward	and	backward	passes	are	concatenated	to	provide	the	contextualized	
representations	for	each	time	step.	



4/1/24

13

A	Closer	Look	at	the	Basic	RNN	version

Image	source:	Speech	and	Language	Processing.	Daniel	Jurafsky &	James	H.	Martin.	Draft	of	February	3,	2024.	

The	purpose	of	the	encoder	is	to	
generate	a	contextualized	
representation	of	the	input.	
This	representation	is	embodied	
in	the	final	hidden	state	of	the	
encoder,	hen.	
This	representation,	the	context,	
is	then	passed	to	the	decoder.	

A	Closer	Look	at	the	Basic	RNN	version

Image	source:	Speech	and	Language	Processing.	Daniel	Jurafsky &	James	H.	Martin.	Draft	of	February	3,	2024.	

The	simplest	version	of	the	
decoder	network	takes	this	
state	and	uses	it	to	initialize	just	
the	first	hidden	state	of	the	
decoder
The	first	decoder	RNN	cell	
would	use	c	as	its	prior	hidden	
state	hd0.	
The	decoder	would	then	autoregressively	generates	a	sequence	of	outputs,	an	
element	at	a	time,	until	an	end-of-sequence	marker	is	generated.	



4/1/24

14

A	Closer	Look	at	the	Basic	RNN	version

Image	source:	Speech	and	Language	Processing.	Daniel	Jurafsky &	James	H.	Martin.	Draft	of	February	3,	2024.	

In	the	figure	on	the	right,	the	
context	vector	is	made	available	
to	all of	the	decoders	hidden	
states.
This	is	done	to	ensure	that	the	
influence	of	the	context	vector	
does	not	wane	as	the	output	
sequence	is	generated.	

Training	the	Encoder-Decoder	Model

Image	source:	Speech	and	Language	Processing.	Daniel	Jurafsky &	James	H.	Martin.	Draft	of	February	3,	2024.	

Encoder-decoder	architectures	
are	trained	end-to-end.	
Each	training	example	is	a	
tuple	of	paired	strings,	a	
source	and	a	target.
They	are	concatenated	with	a	
separator	token.
For	MT,	the	training	data	
typically	consists	of	sets	of	
sentences	and	their	
translations.	



4/1/24

15

Training	the	Encoder-
Decoder	Model

Image	source:	Speech	and	Language	Processing.	Daniel	Jurafsky &	James	H.	Martin.	Draft	of	February	3,	2024.	

The	network	is	given	the	
source	text
Starting	with	the	separator	
token,	it	is	trained	
autoregressively	to	predict	
the	next	word.

Note	the	differences	between	training		and	inference	with	respect	to	the	outputs	at	each	time	step.	
The	decoder	during	inference uses	its	own	estimated	output	yˆ	as	the	input	for	the	next	time	step	x+1	.	
Thus	the	decoder	will	tend	to	deviate	more	and	more	from	the	gold	target	sentence	as	it	keeps	
generating	more	tokens.	
In	training,	therefore,	it	is	more	common	to	use	teacher	forcing	in	the	decoder.	
Teacher	forcing	means	that	we	force	the	system	to	use	the	gold	target	token	from	training	as	the	next	
input	xt+1,	rather	than	allowing	it	to	rely	on	the	(possibly	erroneous)	decoder	output	yˆ	.	
This	speeds	up	training.	

Image	source:	Speech	and	Language	Processing.	Daniel	Jurafsky &	James	H.	Martin.	Draft	of	February	3,	2024.	



4/1/24

16

Attention

Image	source:	Speech	and	Language	Processing.	Daniel	Jurafsky &	James	H.	Martin.	Draft	of	February	3,	2024.	

The	encoder-decoder	model	is	appealing	because	of	its	clean	separation	of	the	
encoder	and	decoder.
The	encoder	builds	a	representation	of	the	source	text.
The	decoder	uses	this	context	to	generate	a	target	text.	
The	context	vector	is	hn,	the	hidden	state	of	the	last	(nth)	time	step	of	the	source	text.	

Attention

Image	source:	Speech	and	Language	Processing.	Daniel	Jurafsky &	James	H.	Martin.	Draft	of	February	3,	2024.	

Challenge:	The	final	hidden	state	must	represent	absolutely	everything	about	the	
meaning	of	the	source	text.
This	is	because	it	is	the	only	thing	the	decoder	knows	about	the	source	text.
Similar	to	RNNs,	it	acts	somewhat	as	a	bottleneck:
◦ It	has	to	contain	information	at	the	beginning	of	the	sentence,	
◦ As	well	as	from	the	more	recent	portion	of	the	sentence.

In	other	words,	how	much	information	can	one	pack	into	this	vector?



4/1/24

17

Attention
The	attention	mechanism	is	a	
solution	to	the	bottleneck	problem.
It	collects	information	from	all	the	
hidden	states	of	the	encoder,	not	just	
the	last	hidden	state.	
In	the	attention	mechanism,	the	
context	vector	c	is	a	single	vector	that	
is	a	function	of	the	hidden	states	of	
the	encoder:	c=f(he1...hen).	
We	create	a	single	fixed-length	vector	
c	by	taking	a	weighted	sum	of	all	the	
encoder	hidden	states.	

Image	source:	Speech	and	Language	Processing.	Daniel	Jurafsky &	James	H.	Martin.	Draft	of	February	3,	2024.	

Attention

This	context	vector,	ci,	is	generated	anew	with	each	decoding	step	i and	takes	all	of	the	encoder	
hidden	states	into	account.	

This	context	is	made	available	during	decoding,	along	with	the	prior	hidden	state	and	the	previous	
output	generated	by	the	decoder.

This	is	represented	in	the	figure	on	the	left	side.	On	the	right	side,	you	see	the	single,	last	context	
vector	approach.

Image	source:	Speech	and	Language	Processing.	Daniel	Jurafsky &	James	H.	Martin.	Draft	of	February	3,	2024.	



4/1/24

18

Attention

Here	is	a	diagram	of	the	attention	mechanism.

Image	source:	Speech	and	Language	Processing.	Daniel	Jurafsky &	James	H.	Martin.	Draft	of	February	3,	2024.	


