Long-short Term Memory NN
Attention

MICHAEL WOLLOWSKI

SUMMARY OF CHAPTER 9: RNNS AND LSTMS

FROM: SPEECH AND LANGUAGE PROCESSING.

BY JURAFSKY AND MARTIN. HTTPS://WEB.STANFORD.EDU/~JURAFSKY/SLP3/

4/1/24

Long-Short Term Memory (LSTM) Nets

RNNs are pretty powerful.
However, they have a drawback.
Consider the statement: “The flights the airline was cancelling were full.”

What does “was” refer to?
° "airline” i.e. the prior word

What doe “were” refer to?
o “flights” i.e. a word much earlier in the sentence

4/1/24

Long-Short Term Memory (LSTM) Nets

The recurrent units of an RNN carry state information.

By this we mean that they can “remember” information that may be useful for
processing the next or next few pieces of input.

Think about the task of predicting the next word.

This depends on the prior few words.

The “challenge” is that it has to remember data:
o from the recent past as well as
o potentially from the more distant past.

Long-Short Term Memory (LSTM) Nets

To address this problem, more complex units were developed.

Those units are designed to explicitly manage context

As such, they have two inputs:
° the data pushed through the network and

° context data, maintained by the network.

In Long short-term memory (LSTM) networks the units are designed to:
> remove information that is no longer needed from the context, and
o adding information likely to be needed for later decision making.

4/1/24

Long-Short Term Memory (LSTM) Nets

The units use of gates to control the flow of information into and out of the
units.

These gates are implemented through the use of additional weights that operate
sequentially on the input, the previous hidden layer and the previous context
layers.

LSTM Units in Detail ®

Let’s zoom in and talk about some detail.

Btw. the images are from the fabulous blog

entry referenced below. »—x O,
G@anh
X %
(o] [tanh] (o]
2 >

1 O — > <] @ (

Neural Network Pointwise Vector
Layer Operation Transfer

Concatenate Copy

LONG SHORT-TERM MEMORY
NEURAL NETWORKS

. Updated cell state to help
LSTM Recurrent Unit determine new hidden state

e

Ct

>
>

Cell state

Hidden state

]

hy_y I hy
B S 7 S 7 S
X i

H Candidate
i for cell state
: update

Forget Input Output

gate gate gate

Clarification on RNN

The diagram suggests that 7 7 o7

the hidden Iayer Sampled Word SO/ E Ioné E and i ?
| | |
information is made ! (_T_j ! ! %
available to the next unit. softmax ol I wl ol | ol
1 L 1
This is incorrect. [RNN l;] : [: [] : s \
| | |
The diagram is unfolded in : lTI : lTI : lTI)
time. Embedding : @ : : [%]
| | |
. N | | |

have one input word.

QTR E] Autoregressive generation with an RNN-based neural language model.

4/1/24

4/1/24

Clarification on RNNs

Here is an RNN with three A A A
input nodes. hj h§ h§

Notice that the hidden
layers info is not shared.

Hidden
Recall that the recurrent layer
input to a node is simply

the prior output. h*!

Hence a fairly myopic
memory.

Input
layer

Long-Short Term Memory (LSTM) Nets

Below is an LSTM unit shown in time.

Notice the input x,, output h, context (upper arrows) and hidden state (lower

arrows) 63 @ @

T
n [TEAL A
© ® ©
[e A T S T GO]

LSTM Units in Detail

Let’s have a look at the context
data.

Early on, the unit performs

multiplication on context vector C c
t—1

and soon afterwards the unit

(X)
performs addition on it. b

The first operation is designed to
remove data from the context
vector.

The second operation is designed to
add data to the context vector.

LSTM Units in Detail

Let’s have a look at how to “remove” from
the context vector.

At first, the unit concatenates the input
and hidden state vectors.

Using the weights and resulting vector, the
unit calculates the weighted sum of its
inputs and runs it through a sigmoid
function to produce a vector f.

f
This is called the forget gate. '

Vector fis multiplied with vector C. hey

As such f acts as a mask, zeroing out
information that should be forgotten and
keeping information that should be kept. Tt

4/1/24

LSTM Units in Detail

Let’s have a look at how to “add” to the
context vector.

Using a separate sigmoid activation
function, the unit determines which
values to update.

This is called the input gate. it
G
Next, a tanh activation function creates a L
vector of new candidate values. —
Tt [

LSTM Units in Detail

Next, perform multiplication on the
vector produced by the input gate and
the candidate values produced by tanh.

As with the forget gate, the output Cr_y .
vector produced by the sigmoid function X)
acts as a mask.

[i >
The resulting vector is added to the ‘ t Cy

context vector.

4/1/24

4/1/24

LSTM Units in Detail

We are done with maintaining the context.

Next, let us have a look at calculating the output

and updated hidden state. he A

The output gate is used to decide what data is
required for the current hidden state.

Using yet another sigmoid activation function,
the unit determines which values are relevant. Ganh>

0,
Before using the sigmoid function as a mask on | 0
the context vector, the unit runs it through tanh. 2

This is necessary because the addition to the >
context vector may have produces values outside
of therange [-1.. 1] s

LSTMs — A different perspective

On the next slide, you see an image of an LSTM unit.

It highlights the matrices used for running it.

As you may imagine the more matrices, the more weights that need to be
learned, the more computing time it takes to train the network.

4/1/24

4 N\
Ct-1 T] ®©
] f
e o + C ct -
ht-1 3 tanh
e,
i
+)<0
Xp——%
NPl LSTM
o J
Review of NN units
On the right, you see h h Gt ht
units and the sort of a a
input they take. ‘ ! ﬁ
X ht_q X Ct1 hyq X
() (b) (o)

Common RNN
NLP Architectures

. w) C w)

f f t t f }
X1 X2 *n X4 X2 *n

a) sequence labeling b) sequence classification

i Y2 Ym
t t t
C RNN
(C__ EncoderANN)

1 3 T Encoder RNN
X1 X2 *t-1 Xy Xp Xn

c) language modeling d) encoder-decoder

Four architectures for NLP tasks. In sequence labeling (POS or named entity tagging) we map
each input token x; to an output token y;. In sequence classification we map the entire input sequence to a single
class. In language modeling we output the next token conditioned on previous tokens. In the encoder model we
have two separate RNN models, one of which maps from an input sequence x to an intermediate representation
we call the context, and a second of which maps from the context to an output sequence y.

Encoder-Decoder

different lengths

Also called sequence-to-sequence network

Used when an input sequence is to be translated to an output sequence that is of a different
length than the input, and does not align with it in a word-to-word way.

Example: machine translation, where the input sequence and output sequence can have

X4 Xo

Y1 Yo Ym

(Context

*n

IPENCERL] The encoder-decoder architecture. The context is a function of the hidden
representations of the input, and may be used by the decoder in a variety of ways.

4/1/24

10

4/1/24

27 Ym

X1 Xp X

n

IJTMLE BT The encoder-decoder architecture. The context is a function of the hidden

Encoder network that ta kes an Input sequence and representations of the input, and may be used by the decoder in a variety of ways.
creates a contextualized representation of it, called the context.

Encoder-decoder networks consist of three conceptual components:

1. Anencoder that accepts an input sequence, x,.,, and generates a corresponding sequence of
contextualized representations, h;.,.

2. Acontext vector, ¢, which is a function of h,.,, and conveys the essence of the input to the
decoder.

3. Adecoder, which accepts c as input and generates an arbitrary length sequence of hidden
states h,.,,,, from which a corresponding sequence of output states y, ., can be obtained.

LSTMs, convolutional networks, and transformers can all be employed as encoders or decoders.

Translation with a
Basic RNN version

We use <s> for the sentence

separator token. - ‘Targa U

We wish to translate the English
source text “the green witch et oupeyorsoueeis e en
arrived” iayor ﬁ
to a Spanish sentence “llego’ la e 08§ 8§ 3
bru j q verde” the green witch arived <s> . /Ilegé 3 /,la ; ,bruja i/verde
The latter can be glossed word-by- Source Text separater

ITNCENY] Translating a single sentence (inference time) in the basic RNN version of encoder-decoder ap-
proach to machine translation. Source and target are cc d with a sep or token in between,
and the decoder uses context information from the encoder’s last hidden state.

word as ‘arrived the witch green’.

11

4/1/24

Translation with a

P e el -
llegd 3 la” ! bruja | verde | </s>
! | i i

Basic RNN version L F—— D S T T TS
o (e i AR VAR
BERAR

To translate a source text, we runit | " f
through the network performing o % ? ? ? % ,

the green witch arrived <s> | llego Ja 9ruja verde
. LA DAy i
forward inference to generate ~—
eparator
. . Source Text
h | d d en states unti | we get to th een d Translating a single sentence (inference time) in the basic RNN version of encoder-decoder ap-
proach to machine translation. Source and target are with a token in between,

of th e source. and the decoder uses context information from the encoder’s last hidden state.

Then we begin autoregressive generation, asking for a word in the context of the
hidden layer from the end of the source input as well as the end-of-sentence
marker.

Subsequent words are conditioned on the previous hidden state and the
embedding for the last word generated.

A Closer Look at the Basic RNN version

Decoder
The prior figure shows only a vl W W v
single network layer for the oty e nored b ecodne ST T o
encoder. den e}
Stacked architectures are the led“ @ * % 3 e 3 : ; ;
norm. layer % X Xs X <s> D Vi Pz s § m
The output states from the top — S
layer of the stack are taken as the A more formal version of translating a sentence at inference time in the basic RNN-based

f- I t t encoder-decoder architecture. The final hidden state of the encoder RNN, Ay, serves as the context for the
Inalre p resentation. decoder in its role as hg in the decoder RNN, and is also made available to each decoder hidden state.

The encoder consists of stacked biLSTMs where the hidden states from top layers from
the forward and backward passes are concatenated to provide the contextualized
representations for each time step.

12

A Closer Look at the Basic RNN version

The purpose of the encoder is to Decoder
generate a contextualized w i wT W e
(output i ignored during encoding) A LS S S -
representation of the input. ot o)) G) ()} (e
1 H H H hidden | [h® he,| he, he,=c= [- : he he e

This representation is embodied i [< bk a e
in the final hidden state of the ol N I |

X4 X, X3 Xy <s> Pzl 2 /,Yz I Ym
encoder, he,. [’ , ’

Encoder

ThIS represe ntatlon , the Cco nteXt, A more formal version of translating a sentence at inference time in the basic RNN-based
. encoder-decoder architecture. The final hidden state of the encoder RNN, Ay, serves as the context for the
IS then pa Ssed tO the decoder. decoder in its role as /¢ in the decoder RNN, and is also made available to each decoder hidden state.

A Closer Look at the Basic RNN version

The simplest version of the Decoder
decoder network takes this S
state and uses it to initialize just st

the first hidden state of the e
embedding
decoder
The first decoder RNN cell
Encoder

WOUId use c as its prlor h Idden A more formal version of translating a sentence at inference time in the basic RNN-based

d encoder-decoder architecture. The final hidden state of the encoder RNN, A, serves as the context for the
State h 0 decoder in its role as hg in the decoder RNN, and is also made available to each decoder hidden state.

The decoder would then autoregressively generates a sequence of outputs, an
element at a time, until an end-of-sequence marker is generated.

4/1/24

13

A Closer Look at the Basic RNN version

In the figure on the right, the
context vector is made available
to all of the decoders hidden
states.

This is done to ensure that the
influence of the context vector
does not wane as the output
sequence is generated.

Decoder
. i <]
Y1 Y2 | Vs Yo | </s>
(output is ignored during encoding) Iy A - Y
softmax I i) 1) | G | (el
! i
i i
hidden [he, he, he, he,=c=hi, """ ':’ l:“ L |:" ! r:
layer(s)
embedding
layer
i
X4 X, X3 Xy <s> /4)" 2 /,Yz I Ym
Encoder

LIIPLENE] A more formal version of translating a sentence at inference time in the basic RNN-based
encoder-decoder architecture. The final hidden state of the encoder RNN, Ay, serves as the context for the
decoder in its role as hg in the decoder RNN, and is also made available to each decoder hidden state.

Training the Encoder-Decoder Model

Encoder-decoder architectures
are trained end-to-end.

Each training example is a
tuple of paired strings, a
source and a target.

They are concatenated with a
separator token.

For MT, the training data
typically consists of sets of
sentences and their
translations.

Decoder

gold

Ilego la bl’kllja answers

Y1 y2 Vs Ve s
T
Total loss is the average 1
cross-entropy loss per L= T Z Li per-word
target word: i=1 loss
C;LE) (%) v
]]

- Y
Eﬁwwwwwu

BEEEEE

layer(s)
X3 Xy
arrived <s> llego la bruja verde

verde </s>
I I

X,

the gréen witch

|

Encoder

Training the basic RNN encoder-decoder approach to machine translation. Note that in the
decoder we usually don’t propagate the model’s softmax outputs J;, but use teacher forcing to force each input
to the correct gold value for training. We compute the softmax output distribution over § in the decoder in order
to compute the loss at each token, which can then be averaged to compute a loss for the sentence.

4/1/24

14

4/1/24

Training the Encoder-
Decoder Model

Decoder
The network is given the , . i
Ilelgc I‘a bn‘ua vel"de </|S> s
source text ” % " » ”

token, it is trained

Starting with the separator e * * * * * s

- soﬁTax
Yy
autoregressively to predict {1 idan
the next word. 8 @ g @ ? ? ? ? ? enpi
th; gr;en wi;::h arr;:/ed <s> llegod la bruja verde
~
Encoder

Training the basic RNN encoder-decoder approach to machine translation. Note that in the
decoder we usually don’t propagate the model’s softmax outputs ¥, but use teacher forcing to force each input
to the correct gold value for training. We compute the softmax output distribution over y in the decoder in order
to compute the loss at each token, which can then be dto a loss for the

Target Text llegé a brja verde </s> gold

y
PN S D 4]] '
7 e e - Total loss is the average
llego | Ia bruja verde </s> cross-entropy loss per L = Li - per-word
[N 4 + + target word: loss
softmax (output of source is ignored)

llllllll

hidden

fayert)] i o
embedding ! embedding
layer ! layer

! x,
the green witch arrived <s> 1 lle 0 Ja bruja verde i ki X *
9 a s o the green witch arrived <s> llego la bruja verde

Separator

Source Text Encoder

IITe By Translating a single sentence (inference time) in the basic RNN version of encoder-decoder ap-
proach to machine translation. Source and target sentences are concatenated with a separator token in between,
and the decoder uses context information from the encoder’s last hidden state.

Training the basic RNN encoder-decoder approach to machine translation. Note that in the
decoder we usually don’t propagate the model’s softmax outputs §;, but use teacher forcing to force each input
to the correct gold value for training. We compute the softmax output distribution over § in the decoder in order
to compute the loss at each token, which can then be averaged to compute a loss for the sentence.

Note the differences between training and inference with respect to the outputs at each time step.

The decoder during inference uses its own estimated output y” as the input for the next time step x+1 .
Thus the decoder will tend to deviate more and more from the gold target sentence as it keeps
generating more tokens.

In training, therefore, it is more common to use teacher forcing in the decoder.

Teacher forcing means that we force the system to use the gold target token from training as the next

input xt+1, rather than allowing it to rely on the (possibly erroneous) decoder output y” .
This speeds up training.

15

4/1/24

Attention

Encoder bottleneck Decoder

L A

Requiring the context c to be only the encoder’s final hidden state forces all the
mformatlon from the entire source sentence to pass through this representational bottleneck.

The encoder-decoder model is appealing because of its clean separation of the
encoder and decoder.

The encoder builds a representation of the source text.

The decoder uses this context to generate a target text.

The context vector is h,, the hidden state of the last (nth) time step of the source text.

bottleneck

Encoder Decoder

Attention B B R

IR ®]] Requiring the context ¢ to be only the encoder’s final hidden state forces all the
information from the entire source sentence to pass through this representational bottleneck.

Challenge: The final hidden state must represent absolutely everything about the
meaning of the source text.
This is because it is the only thing the decoder knows about the source text.
Similar to RNNs, it acts somewhat as a bottleneck:

° It has to contain information at the beginning of the sentence,

o As well as from the more recent portion of the sentence.

In other words, how much information can one pack into this vector?

16

Attention

The attention mechanism is a
solution to the bottleneck problem.

It collects information from all the > aishé
hidden states of the encoder, not just ;
the last hidden state. attention /7 /3\/1\/ pe
In the attention mechanism, the W‘i'v??ts \T‘]} “““““ e“““
context vector cis a single vector that thiy - Ry R e,
is a function of the hidden states of hidden H E E H
the encoder: c=f(h®,...h¢,). layer(s)
We create a single fixed-length vector X, X, Xq X,
¢ by taking a weighted sum of all the \ y
encoder hidden states. ~
Encoder

Attention

m ,.m

Ym

C;) L,

This context vector, ¢, is generated anew with each decoding step i and takes all of the encoder
hidden states into account.

This context is made available during decoding, along with the prior hidden state and the previous
output generated by the decoder.

This is represented in the figure on the left side. On the right side, you see the single, last context
vector approach.

4/1/24

17

4/1/24

Attention

Decoder

attention
weights
Qi

hidden
layer(s)

Encoder

13T EP®»] A sketch of the encoder-decoder network with attention, focusing on the computation of c;. The
context value ¢; is one of the inputs to the computation of h;i. It is computed by taking the weighted sum of all
the encoder hidden states, each weighted by their dot product with the prior decoder hidden state hlf'lfl.

Here is a diagram of the attention mechanism.

18

