
3/29/24

1

Recurrent	NN
MICHAEL	WOLLOWSKI

SUMMARY	OF	CHAPTER	9: 	RNNS	AND	LSTMS	

FROM:	SPEECH	AND	LANGUAGE	PROCESSING. 	

BY	 JURAFSKY AND	MARTIN. 	HTTPS://WEB.STANFORD.EDU/~JURAFSKY/SLP3/

NLP	with	FFnet
Performing	next	word	prediction	
with	a	feed-forward	network	and	
word	embeddings.

At	each	time	step	t,	the	network	
converts	N	context	words,	each	to	
a	d-dimensional	embedding.

It	concatenates	the	N	embeddings
together	to	obtain	the	Nd x	1	unit	
input	vector x for	the	network.	

The	output	of	the	network	is	a	
probability	distribution	over	the	
vocabulary.

Image	source:	Jurafsky &	Martin,	Speech	and	Language	Processing.	3rd Ed.,	Draft	of	January	12,	2022.	



3/29/24

2

RNN	Introduction

Image	source:		fdeloche - Own	work,	CC	BY-SA	4.0,	https://commons.wikimedia.org/w/index.php?curid=60109157

In	an	RNN,	a	unit	has	a	feedback	loop	to	itself,	hence	“recurrent”.

This	enables	a	unit	to	maintain	a	state.

Below	is	an	RNN	unit	unfolded	in	time.

Applications	of	RNNs
RNNs	can	use	their	internal	state	(memory)	to	process	variable	length	sequences	
of	inputs.

RNNs	are	used	in	processing	language	and	speed.

In	language	and	speech,	we	have	long	sequences	of	inputs.



3/29/24

3

RNNs	in	Detail
Let’s	focus	on	the	right	part	of	the	following	image	first.
It	contains	the	vanilla	feed-forward	portion	of	the	RNN:
◦ input	vector	xt
◦ weight	matrix	W	from	input	to	
hidden	layer	units

◦ vector	ht of	the	hidden	
layer	unit	activations

◦ weight	matrix	V	leading	from	the	
hidden	layer	to	output	layer.

◦ output	vector	yt

Image	source:	Jurafsky &	Martin,	Speech	and	Language	Processing.	3rd Ed.,	Draft	of	October	2,	2019.	

RNNs	in	Detail
Now	let’s	focus	on	the	left	portion	
of	the	image.

It	captures	the	recurrent	nature	of	
RNNs

ht-1 is	the	output	of	the	hidden	
layer	units	at	the	prior	time	step.

U	is	the	weight	vector	from	the	
hidden	layer	units	to	themselves.

Image	source:	Jurafsky &	Martin,	Speech	and	Language	Processing.	3rd Ed.,	Draft	of	October	2,	2019.	



3/29/24

4

Calculating	Activations

Image	source:	Jurafsky &	Martin,	Speech	and	Language	Processing.	3rd Ed.,	Chapter	9,	Draft	of	February	3,	2024.	

Next	word	Prediction
Texting	applications	and	emailers	attempt	to	do	next	word	prediction.	

Not	very	well,	because	they	have	limited	context.

Next	word	prediction	improves	with	the	length	of	the	context	(and	a	
corresponding	size	of	the	model.

Consider	“Thanks	for	all	the”

What	word	might	follow?



3/29/24

5

Next	word	Prediction
How	about	“fish”?

We	would	compute:	 P(fish|Thanks for	all	the)	

Language	models	give	us	the	ability	to	assign	such	a	conditional	probability	to	
every	possible	next	word

In	other	words,	they	give	us	a	distribution	over	the	entire	vocabulary.	

RNN	for	Next	Word	Prediction

Image	source:	Speech	and	Language	Processing.	Daniel	Jurafsky &	James	H.	Martin.	Draft	of	February	3,	2024.	



3/29/24

6

RNNs	in	Detail
By	now,	you	should	be	aware	that:
◦ neural	networks	have	weights	
◦ we	adjust	weights	as	part	of	wrestling	a	NN	into	
submission.	

Let’s	see	what	is	new	when	it	comes	to	RNNs.

At	right	is	a	single	recurrent	unit.

The	dashed,	blue	link	means	an	additional	weight.

Image	source:	Jurafsky &	Martin,	Speech	and	Language	Processing.	3rd Ed.,	Draft	of	October	2,	2019.	

RNNs	in	Detail
The	image	on	the	right	
shows	processing	of	three	
input	sets,	x1,	x2 and	x3.

The	network	is	unrolled	in	
time	to	show	how	the	use	
of	the	hidden	layer	data.

Throughout	training,	the	
weight	matrices	U,	V	and	W	
change.

Image	source:	Jurafsky &	Martin,	Speech	and	Language	Processing.	3rd Ed.,	Draft	of	October	2,	2019.	



3/29/24

7

RNNs	in	Detail
Learning	in	RNNs	is	through	
backpropagation.
Consider	the	upper	right	
corner	of	the	image	on	the	
right.	
t3 is	the	target	vector	and	y3 is	
the	actual	output.
Adjusting	V	is	as	with	FF	
networks,	i.e.	it	depends	on	
the	difference	between	t3 and	
y3.

Image	source:	Jurafsky &	Martin,	Speech	and	Language	Processing.	3rd Ed.,	Draft	of	October	2,	2019.	

RNNs	in	Detail
Adjusting	U requires	data	from	
the	errors	at	the	output	layer	as	
well	as	the	hidden	layer.

This	is	shown	by	the	red	arrows	
into	h2.	

There	is	a	time	offset	though.

Again,	looking	at	h2,	we	take	the	
current	error	from	t2-y2 and	add	
to	it	the	error	from	the	next	time	
step,	i.e.	the	one	at	h3.

Recall	h	outputs	the	same	value	
to	itself	and	the	next	layer.

Image	source:	Jurafsky &	Martin,	Speech	and	Language	Processing.	3rd Ed.,	Draft	of	October	2,	2019.	



3/29/24

8

Backpropagation	through	Time
Tailoring	the	backpropagation	algorithm	to	this	situation	
leads	to	a	two-pass	algorithm	for	training	the	weights	in	RNNs.	
In	the	first	pass,	we	perform	forward	inference,	computing	ht ,	yt ,	
accumulating	the	loss	at	each	step	in	time,	saving	the	value	of	the	hidden	layer	
at	each	step	for	use	at	the	next	time	step.	
In	the	second	phase,	we	process	the	sequence	in	reverse,	computing	the	
required	gradients	as	we	go,	computing	and	saving	the	error	term	for	use	in	
the	hidden	layer	for	each	step	backward	in	time.	
This	general	approach	is	commonly	referred	to	as	backpropagation	through	
time.

Image	source:	Jurafsky &	Martin,	Speech	and	Language	Processing.	3rd Ed.,	Draft	of	October	2,	2019.	

Backpropagation	through	Time

With	modern	computational	frameworks	and	adequate	computing	
resources,	there	is	no	need	for	a	specialized	approach	to	training	RNNs.

Explicitly	unrolling	a	recurrent	network	into	a	feedforward	computational	graph	
eliminates	any	explicit	recurrences,	allowing	the	network	weights	to	be	trained	
directly.	

We	provide	a	template	that	specifies	the	basic	structure	of	the	network,	including	all	
the	necessary	parameters	for	the	input,	output,	and	hidden	layers,	the	weight	
matrices,	as	well	as	the	activation	and	output	functions	to	be	used.	

When	presented	with	a	specific	input	sequence,	we	can	generate	an	unrolled	
feedforward	network	specific	to	that	input,	and	use	that	graph	to	perform	forward	
inference	or	training	via	ordinary	backpropagation.	

Image	source:	Jurafsky &	Martin,	Speech	and	Language	Processing.	3rd Ed.,	Draft	of	October	2,	2019.	



3/29/24

9

Backpropagation	through	Time

For	applications	that	involve	much	longer	input	sequences,	unrolling	an	entire	
input	sequence	may	not	be	feasible.	

In	these	cases,	we	can	unroll	the	input	into	manageable	fixed-length	segments	
and	treat	each	segment	as	a	distinct	training	item.	

Image	source:	Jurafsky &	Martin,	Speech	and	Language	Processing.	3rd Ed.,	Draft	of	October	2,	2019.	

Part-of-Speech	(POS)	Tagging	with	RNNs
POS	tagging	a	sequence	
with	a	simple	RNN

Pre-trained	word-
embeddings serve	as	
inputs.

A	softmax layer provides	
probability	distribution	
over	the	POS	tags	at	each	
time	step

Image	source:	Jurafsky &	Martin,	Speech	and	Language	Processing.	3rd Ed.,	Draft	of	January	12,	2022.	



3/29/24

10

Document	Classification	with	RNNs

This	network	processes	a	
sequence	of	text	and	then	
classifies	it.

It	can	be	used	for	SPAM	
detection.

Image	source:	Jurafsky &	Martin,	Speech	and	Language	Processing.	3rd Ed.,	Draft	of	October	2,	2019.	

Autoregressive	RNN
Used	for	text	generation.

Called	”generative	AI”

ChatGPT is	considered	an	
autoregressive	model.

Image	source:	Speech	and	Language	Processing.	Daniel	Jurafsky &	James	H.	Martin.	Draft	of	February	3,	2024.	



3/29/24

11

Autoregressive	RNN

1. Typically,	the	system	starts	with	a	seed.

2. In	the	diagram	on	the	right,	the	system	begins	with	a	beginning	of	the	sentence	
marker	<s>

3. Next,	sample	a	word	in	the	output	from	the	softmax distribution	that	results	
from	using	the	beginning	of	sentence	marker,	<s>

4. Use	the	word	as	the	input	to	the	next	time	step,	and	sample	the	next	word	in	the	
same	fashion.	

5. Continue	generating	until	the	end	of	sentence	marker,	</s>,	is	sampled	or	a	fixed	
length	limit	is	reached.	

Image	source:	Speech	and	Language	Processing.	Daniel	Jurafsky &	James	H.	Martin.	Draft	of	February	3,	2024.	

Stacked	RNNs
So	far,	the	inputs	to	the	RNNs	
have	consisted	of	sequences	
of	words.

The	outputs	have	been	
vectors	useful	for	predicting	
words,	tags	or	sequence	
labels.	

A	stacked	RNN	is	a	network	in	
which	the	entire	sequence	of	
outputs	from	one	RNN	as	an	
input	sequence	to	another	
one.	

Image	source:	Speech	and	Language	Processing.	Daniel	Jurafsky &	James	H.	Martin.	Draft	of	February	3,	2024.	



3/29/24

12

Stacked	RNNs
Stacked	RNNs	generally	outperform	single-layer	networks.	

One	reason	for	this	success	seems	to	be	that	the	network	induces	
representations	(patterns)	at	differing	levels	of	abstraction	across	layers.

Similar	effect	to	what	CNNs do.

The	initial	layers	of	stacked	networks	can	induce	representations	that	serve	as	
useful	abstractions	for	further	layers.

The	optimal	number	of	stacked	RNNs	is	specific	to	each	application	and	to	
each	training	set.	

Image	source:	Speech	and	Language	Processing.	Daniel	Jurafsky &	James	H.	Martin.	Draft	of	February	3,	2024.	

Bidirectional	RNNs
A	bidirectional	RNN	are	two	
RNNs:
◦ one	processes	information	
from	beginning	to	end	of	a	
sentence	and	

◦ the	other	from	end	to	
beginning.

The	information	of	both	RNNs	is	
then	concatenated

Image	source:	Speech	and	Language	Processing.	Daniel	Jurafsky &	James	H.	Martin.	Draft	of	February	3,	2024.	



3/29/24

13

Bidirectional	RNNs

An	RNN	uses	information	from	the	left	(prior)	context	to	make	its	predictions	at	
time	t.	

In	many	applications	we	have	access	to	the	entire	input	sequence.

In	those	cases	we	would	like	to	use	words	from	the	context	to	the	right	of	t.	

One	way	to	do	this	is	to	run	two	separate	RNNs,	one	left-to-right,	and	one	right-to-
left,	and	concatenate	their	representations.	

Image	source:	Speech	and	Language	Processing.	Daniel	Jurafsky &	James	H.	Martin.	Draft	of	February	3,	2024.	

Bidirectional	RNNs

In	the	left-to-right	RNNs	we	have	seen	so	far,	the	hidden	state	at	a	given	time	t	
represents	everything	the	network	knows	about	the	sequence	up	to	that	point.	

The	state	is	a	function	of	the	inputs	x1,...,xt and	represents	the	context	of	the	
network	to	the	left	of	the	current	time.	

To	take	advantage	of	context	to	the	right	of	the	current	input,	we	can	train	an	RNN	
on	a	reversed	input	sequence.	

With	this	approach,	the	hidden	state	at	time	t	represents	information	about	the	
sequence	to	the	right	of	the	current	input:	

Image	source:	Speech	and	Language	Processing.	Daniel	Jurafsky &	James	H.	Martin.	Draft	of	February	3,	2024.	



3/29/24

14

Bidirectional	RNNs

A	bidirectional	RNN	combines	two	independent	RNNs:
◦ one	where	the	input	is	processed	from	the	start	to	the	end,	and	
◦ the	other	from	the	end	to	the	start.	
The	overall	network	then	concatenates	the	two	representations	computed	by	the	
networks	into	a	single	vector.
It	captures	both	the	left	and	right	contexts	of	an	input	at	each	point	in	time.

Image	source:	Speech	and	Language	Processing.	Daniel	Jurafsky &	James	H.	Martin.	Draft	of	February	3,	2024.	

Bidirectional	RNN	for	Sequence	
Classification
Bidirectional	RNNs	have	proven	to	
be	quite	effective	for	sequence	
classification.		
The	final	state	naturally	reflects	
more	information	about	the	end	of	
the	sentence	than	its	beginning.	
Simply	combine	the	final	hidden	
states	from	the	forward	and	
backward	passes.

Image	source:	Speech	and	Language	Processing.	Daniel	Jurafsky &	James	H.	Martin.	Draft	of	February	3,	2024.	


