
3/22/24

1

Mastering	the	game	of	Go	
without	human	knowledge	

Michael	Wollowski
Summary	of	

Silver	at	al.	Mastering	the	game	of	Go	without	human	knowledge
https://www.nature.com/articles/nature24270

Introduction

• AlphaGoZero is	its	own	teacher:	a	neural	network	is	trained	to	predict	
its	own	move	selections	and	the	winner	of	games.	
• The	training	happens	solely	on	reinforcement	learning,	without	
human	data,	guidance	or	domain	knowledge	beyond	game	rules.	
• AlphaGoZero achieved	superhuman	performance,	winning	100–0	
against	the	previously	published,	champion-defeating	AlphaGo.	



3/22/24

2

Introduction

• Until	recently,	supervised	learning	systems	were	trained	to	replicate	
the	decisions	of	human	experts.
• However,	expert	data	sets	are	often	expensive,	unreliable	or	simply	
unavailable.	
• Even	when	reliable	data	sets	are	available,	they	may	impose	a	ceiling	
on	the	performance	of	systems	trained	in	this	manner.	

Introduction

• By	contrast,	reinforcement	learning	systems	are	trained	from	their	
own	experience.
• Recently,	there	has	been	rapid	progress	towards	this	goal,	using	deep	
neural	networks	trained	by	reinforcement	learning.	
• The	game	of	Go	was	widely	viewed	as	a	grand	challenge	for	artificial	
intelligence.
• It	requires	a	precise	and	sophisticated	look-ahead	in	vast	search	
spaces.



3/22/24

3

Basic	Characteristics

• AlphaGoZero differs	from	AlphaGo Fan	and	AlphaGo Lee	in	several	
important	aspects.	
1. It	is	trained	solely	by	self-play	reinforcement	learning,	starting	from	random	

play,	without	any	supervision	or	use	of	human	data.	
2. It	uses	only	the	black	and	white	stones	from	the	board	as	input	features.	
3. It	uses	a	simpler	tree	search,	without	performing	any	Monte	Carlo	rollouts.	

Overall	Setup	of	AlphaGoZero

• It	uses	a	deep	neural	network.	
• The	network	outputs	both,	move	probabilities	
and	a	value.
• The	vector	of	move	probabilities	p	represents	
the	probability	of	selecting	each	move.
• The	value	v	is	a	scalar	evaluation,	estimating	
the	probability	of	the	current	player	winning	
from	position	s.	
• It	only	uses	its	deep	neural	network	to	evaluate	
leaf	nodes	and	to	select	moves.



3/22/24

4

Self-Play

• The	program	plays	a	game,	s1,	… sT against	itself.
• In	each	position	st,	a	MCTS	is	executed,	resulting	in	a	probabilities	π	of	playing	each	

move	in	st.
• The	final	position	sT is	scored	to	determine	the	winner,	z.

NN	Training

• The	neural	network	takes	the	raw	board	position	st as	its	input	and	passes	it	through	many	
convolutional	layers.

• It	outputs	a	vector	pt,	representing	a	probability	distribution	over	moves,	and	
• a	scalar	value	vt,	representing	the	probability	of	the	current	player	winning	in	position	st.



3/22/24

5

NN	Training

• The	neural	network	parameters are	updated:
• to	maximize	the	similarity	of	the	probability	vector	pt to	the	search	
probabilities	πt,	and	

• to	minimize	the	error	between	the	predicted	winner	vt and	the	game	winner	
z.	

• The	new	parameters	are	used	in	the	next	iteration	of	self-play.

MCTS	in	AlphaGoZero

• MCTS	uses	the	neural	network to	guide	its	simulations.
• Each	edge	(s,	a),	i.e.	(situation,	action)	in	the	search	tree	stores	a	prior	

probability	P(s,	a),	a	visit	count	N(s,	a),	and	an	action	value	Q(s,	a).	



3/22/24

6

Evaluation

• Training	started	from	completely	random	behavior.
• It	continued	without	human	intervention	for	approximately	three	
days.	
• 4.9	million	games	of	self-play	were	generated
• Using	1,600	simulations	for	each	MCTS,	corresponds	to	approximately	
0.4	s	thinking	time	per	move.	

Evaluation:	Elo Rating



3/22/24

7

Knowledge	Learned	by	AlphaGoZero

• AlphaGoZero discovered	a	remarkable	level	of	Go	knowledge	during	
its	self-play	training	process.	
• This	included	fundamental	elements	of	human	Go	knowledge
• As	well	as	nonstandard	strategies	beyond	the	scope	of	traditional	Go	
knowledge.	

Knowledge	Learned	by	AlphaGoZero

It	rapidly	progressed	from	entirely	random	moves	towards	a	sophisti-
cated	understanding	of	Go	concepts,	including:	
• fuseki (opening),	
• tesuji (tactics),	
• life and death,	ko (repeated	board	situations),	
• yose (endgame),	
• capturing	races,	sente (initiative),	
• shape,	influence	and	territory,	all	discovered	from	first	principles.	
• shicho (‘ladder’	capture	sequences	that	may	span	the	whole	board)—one	of	
the	first	elements	of	Go	knowledge	learned	by	humans—were	only	
understood	much	later	in	training.	



3/22/24

8

Performance	of	AlphaGoZero

Go	Knowledge	provided	to	AlphaGoZero

• The	player	is	provided	with	the	set	of	legal	moves	in	each	position.	
• Games	terminate	when	both	players	pass	or	after	19	× 19	× 2	=	722	
moves.	
• AlphaGoZero uses	Tromp–Taylor	scoring	during	MCTS	simulations	and	
self-1play	training.



3/22/24

9

NN	Architecture

• The	input	to	the	neural	network	is	a	19	× 19	× 17	image	stack	comprising	17	binary	
feature	planes.

• The	algorithm	was	started	with	random	initial	parameters	for	the	neural	network.	
• Eight	feature	planes,	Xt,	consist	of	binary	values	indicating	the	presence	of	the	current	
player’s	stones	(Xit=1	if	intersection	i contains	a	stone	of	the	player’s	color	at	time step	t;	
0	if	the	intersection	is	empty,	contains	an	opponent	stone,	or	if	t	<	0).	

• Eight	feature	planes,	Yt,	represent	the	corresponding	features	for	the	opponent’s	stones.	
• The	final	feature	plane,	C,	represents	the	color	to	play.
• These	planes	are	concatenated	together	to	give	input	features	

st =	[Xt,	Yt,	Xt−1,	Yt−1,...,	Xt−7,	Yt−7,	C].	
• History	features	Xt,	Yt are	necessary,	because	Go	is	not	fully	observable	solely	from	the	
current	stones,	as	repetitions	are	forbidden;	similarly,	the	color	feature	C	is	necessary,	
because	the	komi is	not	observable.	

NN	Architecture

The	input	features	st are	processed	by	a	residual	tower	that	consists	of	
a	single	convolutional	block	followed	by	either	19	or	39	residual	blocks.	

The	convolutional	block	applies	the	following	modules:
(1)	A	convolution	of	256	filters	of	kernel	size	3	× 3	with	stride	1
(2)	Batch	normalization
(3)	A	rectifier	nonlinearity



3/22/24

10

NN	Architecture

Each	residual	block	applies	the	following	modules	sequentially	to	its	
input:	
(1)	A	convolution	of	256	filters	of	kernel	size	3	× 3	with	stride	1
(2)	Batch	normalization
(3)	A	rectifier	nonlinearity
(4)	A	convolution	of	256	filters	of	kernel	size	3	× 3	with	stride	1
(5)	Batch	normalization
(6)	A	skip	connection	that	adds	the	input	to	the	block
(7)	A	rectifier	nonlinearity

NN	Architecture
The	output	of	the	residual	tower	is	passed	into	two	separate	‘heads’	for	
computing	the	policy	and	value.	
The	policy	head	applies	the	following	modules:	
(1)	A	convolution	of	2	filters	of	kernel	size	1	× 1	with	stride	1
(2)	Batch	normalization
(3)	A	rectifier	nonlinearity
(4)	A	fully	connected	linear	layer	that	outputs	a	vector	of	size	
192+1=362,	corresponding	to	logit	probabilities	for	all	intersections	and	
the	pass	move



3/22/24

11

NN	Architecture

The	value	head	applies	the	following	modules:
(1)	A	convolution	of	1	filter	of	kernel	size	1	× 1	with	stride	1
(2)	Batch	normalization	
(3)	A	rectifier	nonlinearity	
(4)	A	fully	connected	linear	layer	to	a	hidden	layer	of	size	256
(5)	A	rectifier	nonlinearity
(6)	A	fully	connected	linear	layer	to	a	scalar
(7)	A	tanh nonlinearity	outputting	a	scalar	in	the	range	[−1,	1]

The	overall	network	depth,	in	the	20 or	40	block	network,	is	39	or	79	parameterized	
layers,	respectively,	for	the	residual	tower,	plus	an	additional	2	layers	for	the	policy	
head	and	3	layers	for	the	value	head.	

Play



3/22/24

12

Residual	Blocks

• In	traditional	neural	networks,	each	layer	feeds	into	the	next	layer.	
• In	a	network	with	residual	blocks,	each	layer	feeds	into	the	next	layer	
and	directly	into	the	layers	about	2–3	hops	away.

Batch	Normalization

Source:	https://towardsdatascience.com/batch-norm-explained-visually-how-it-works-and-why-neural-networks-need-it-b18919692739


