9/22/22

Training Convolutional
Neural Networks

MICHAEL WOLLOWSKI
THIS PRESENTATION IS HEAVILY BASED ON THE BLOG ENTRY BY

UJJWAL KARN ENTITLED
AN INTUITIVE EXPLANATION OF CONVOLUTIONAL NEURAL NETWORKS

Introduction

As with feed-forward networks, training consists of sets of inputs with
associated desired outputs.

As with feed-forward networks, we run the CNN and then propagate errors
backwards.

9/22/22

Example

Below is a training example.

The image, which conveniently contains a boat

The target vector is [0, 0, 1, 0] if we wish to classify dogs, cats, boats and birds

Convolution Pooling Convolution Pooling Fully Fully Output Predictions
+RelU Connected Connected

L L I_ """" - Doga(o()u)
2 it
—
Err NNy

1
Ve o o
Ejotar = Y 3(target — output)?

J \ J
(f

Feature Extraction from Image Classification

Weights

As before, the knowledge of the networks is in the weight matrices.

Additionally, the filter values will be adjusted.
As before, the weights are initialize to random values
The architecture of the network is fixed.

In particular the following items do not change during training:
° number of convolutional/pooling layer pairs
o number of feed-forward layers
° number and size of filters
o activation functions

9/22/22

Weights in a CNN

28x28

I

gray image

kernel ki =M

5x5

Input layer

Convolution layer C1

pooling

Pooling laver 51

Convolution layer €2

Vectorization

Concatenation (16x12=192)
192x1

In kl, , and b}, lindicates
the layer, p and ¢4 denote the
map indices of current and
next layers, respectively.

10x1
104192 b 10x1
-]
Fully =
connection 5
J)
v W

Pooling layer $2 Fully connection layer FC Output layer

Training the network

Interlude: Softmax.

Output Softmax

layer activation function

[1.3]

5.1 ezi

2.2 |w—
K .

1.1

Step 1. Initialize all filters and parameters / weights with random values

Step 2: Run the network on a training example. Typically, we finish off by running
softmax to normalize the output vector.

Probabilities

[0.02]
0.90

=—10.05

0.01

0.02]

9/22/22

Training the network

Step 3: Calculate the total error at the output layer using the MSE (Mean square error)
loss function: § % (target probability — output probability) 2

Interlude: Calculate the MSE for the following output and target vector combinations:
Target: [0, 0, 1, 0]

Output 1: [0.2, 0.4, 0.1, 0.3]

Output 2: [0.1, 0.1, 0.7, 0.1]

Training the network

Step 4: Use Backpropagation to calculate the gradients of the error with respect to all
weights in the network and use gradient descent to update all filter values / weights
and parameter values to minimize the output error.

Step 5: Repeat steps 2-4 with all images in the training set.
Interlude: Gradient descent.

A pretty animation:
https://upload.wikimedia.org/wikipedia/commons/transcoded/4/4c/Gradient Descen
t in 2D.webm/Gradient Descent in 2D.webm.720p.vp9.webm

9/22/22

Gradient Descent

a
N
e Zy N\
— _
a = gi(by + ngj(bj + Ziaiwij)wjk)
L F
. i)
a .

J

Gradient Descent

o Assume the MSE Loss function.

oWe wish to calculate the gradient loss: E=% 3 (y— a,)? at the ith output.

o The gradient of this loss will be zero except for weights w;; that connect to the
ith output.

o .~ 0a; . dgling)
aWj,z - (y’L aZ)aWj,i - —(yl _al)m

— w—a g (i O ey O
= (yz az)g (mZ)OWj,i = (yz G/z)g (mz) 8Wj,i (; WJ,'L“J)

9/22/22

Derivative of Sigmoid and RelLU

Derivative of RelLU

Image source:

