
CSSE 374:
Design Class Diagrams

Shawn Bohner
Office: Moench Room F212
Phone: (812) 877-8685
Email: bohner@rose-hulman.edu

General solutions get you a 50% tip

Plan for the Day

  Pre-break course
evaluations

  Design Class Diagrams

  Design exercise that
should help with
Homework #3

Help Me Help You

  Pre-break course evaluation
on ANGEL

  Please take 10 minutes or so
to help me improve the
course

UML Class Diagrams

Design Class Diagrams (DCD) 1/2
  Creation of DCDs

builds on prior:
 Domain Model (+detail

to class definitions)
  Interaction diagrams

(identifies class
methods)

  Creation of DCDs and
interaction diagrams
are usually created in
parallel

Q1

Design Class Diagrams (DCD) 2/2

DCDs illustrates the
specifications for
software classes and
interfaces including:
  Classes, associations,

and attributes
  Interfaces, with their

operations and constants
  Methods
  Attribute type information
  Navigability
  Dependencies

java.awt::Font
or

java.awt.Font

plain : Int = 0 { readOnly }
bold : Int = 1 { readOnly }
name : String
style : Int = 0
...

getFont(name : String) : Font
getName() : String
...

«interface»
Runnable

run()

- ellipsis —…“ means there may be elements, but not shown
- a blank compartment officially means —unknown“ but as a
convention will be used to mean —no members“

SubclassFoo

...

run()
...

SuperclassFoo
or

SuperClassFoo { abstract }

- classOrStaticAttribute : Int
+ publicAttribute : String
- privateAttribute
assumedPrivateAttribute
isInitializedAttribute : Bool = true
aCollection : VeggieBurger [*]
attributeMayLegallyBeNull : String [0..1]
finalConstantAttribute : Int = 5 { readOnly }
/derivedAttribute

+ classOrStaticMethod()
+ publicMethod()
assumedPublicMethod()
- privateMethod()
protectedMethod()
~ packageVisibleMethod()
«constructor» SuperclassFoo(Long)
methodWithParms(parm1 : String, parm2 : Float)
methodReturnsSomething() : VeggieBurger
methodThrowsException() {exception IOException}
abstractMethod()
abstractMethod2() { abstract } // alternate
finalMethod() { leaf } // no override in subclass
synchronizedMethod() { guarded }

3 common
compartments

1. classifier name

2. attributes

3. operations

interface
implementation
and
subclassing

Fruit

...

...

PurchaseOrder

...

...

1

association with
multiplicities

dependency

officially in UML, the top format is
used to distinguish the package
name from the class name

unofficially, the second alternative
is common

order

an interface
shown with a
keyword

Common UML
Class

Notation

Recipe for a Design Class Diagram
1)  Identify all the classes participating in the software

solution by analyzing the interaction diagrams
2)  Draw them in a class diagram
3)  Duplicate the attributes from the associated concepts

in the conceptual model
4)  Add method names by analyzing the interaction

diagrams
5)  Add type information to the attributes and methods
6)  Add the associations necessary to support the

required attribute visibility
7)  Add navigability arrows to the associations to indicate

the direction of attribute visibility
8)  Add dependency relationship lines to indicate non-

attribute visibility

Class Diagrams Do Double Duty

  Call them Domain Models when used for
analysis at the conceptual level

  Call them Design Class Diagrams when used
for design

Q2

Register

...

endSale()
enterItem(...)
makePayment(...)

Sale

time
isComplete : Boolean
/total

makeLineItem(...)

Register

...

Sale

time
isComplete : Boolean
/total

Captures

1

11
Domain Model

conceptual
perspective

Design Model

DCD; software
perspective

currentSale

Navigability arrow
Multiplicity only at target end

Role name only at target end

No association name

Attribute Text vs. Association Line Notation

Register

...

...

Sale

...

...

1

Register

currentSale : Sale

...

Sale

...

...

using the attribute
text notation to
indicate Register has
a reference to one
Sale instance

using the association notation to indicate
Register has a reference to one Sale instance

OBSERVE: this style
visually emphasizes
the connection
between these classes currentSale

Register

currentSale : Sale

...

Sale

...

...

1
thorough and
unambiguous, but some
people dislike the
possible redundancy currentSale

Preferred

Avoid

Avoid Role name is attribute name

Q3

Guideline Good Practice: Example

Q4

Showing Collection Attributes

Q5

Multiplicities

Constraints
Preferred, less visual clutter

Operations

  Syntax:
  visibility name(paramName:type, …) : returnType

{properties}

  + getPlayer(name:String) : Player {exception IOException}�

  Also use syntax of implementation language

  public Player getPlayer(String name) throws IOException�

  Operation vs. operation contract vs. method

Cartoon of the Day

http://www.brickfetish.com/toys/duck.html

Keywords Categorize Model Elements

Keyword
 Meaning
 Example Usage

«actor»
 classifier is an actor

shows that classifier is an actor

without getting all xkcd 

«interface»
 classifier is an
interface

«interface»"
MouseListener

{abstract}
 can’t be instantiated
 follows classifier or operation

{ordered}
 set of objects has
defined order

follows role name on target end of
association

{leaf}
 can’t be extended or
overridden

follows classifier or operation

Generalization

  In Domain Model:
 Says that the set of all

NumberCards is a subset of
the set of all Cards

  In DCD:
 Says that, and that

NumberCard inherits
from Card

Dependencies

Attribute association
lines are solid

Dependency lines are dashed

Use dependency lines when a more
specific line type doesn’t apply.

Q6

Can label dependency arrows:
e.g. «call», «create»

Interfaces in UML

«interface»
Timer

getTime()

Clock1

...

getTime()
... lollipop notation indicates Clock3 implements

and provides the Timer interface to clients

Timer is a provided interface

Timer

Clock3

...

getTime()
...

Window2

Window3

dependency line notation

Window2 has a dependency on the
Timer interface when it collaborates
with a Clock2 object

socket line notation

Window3 has a dependency on the
Timer interface when it collaborates
with a Clock3 object

Window1 Timer

socket line notation

Window1 uses the Timer
interface

it has a required interface

Clock2

...

getTime()
...

Clock1
implements and
provides the
Timer interface

Timer

Q7

Composition
  More powerful than an attribute arrow
  Describes “whole-part” relationship

  Implies
  Instance of part belongs to only one composite at a

time
 Part always belongs to a composite
 Composite creates/deletes parts

Q8

Association name in composition is always implicitly
some “has-part” relation. So, it’s common to omit
association or role name with compositions

Interaction Diagrams and
Class Diagrams

  Interaction diagrams show dynamic behavior

  Class diagrams show static behavior

  Tips:
 Draw concurrently

 Use two adjacent whiteboards, one for static and
one for dynamic

 Sketch communication diagrams, document using
sequence diagrams

Exercise on Sequence Diagrams

  Break up into your
project teams

  Given the following:
 Domain Model and a

Sequence Diagram

  Draw Design Class Diagram
showing a Customer and the classes in a
Rental package and a Video package for
BrickBusters Video Store. Try to minimize
dependencies.

Q9

Store
Address
Phone#

Customer
name
address
phone#

Video
ID

Transaction
date

Payment
/amount: Money
type
authorization

Initiates 


Records-
rental-of

Pays-for


Transacts


Rents-from,
Buys-from


Stocks


Selects 

* 1 1 *

*

1

*

1..* 1 1 1

0..*

1

Makes-
Authorizes


1

1..*

Rental
dueDate
ReturnDate
ReturnTime

VideoDescription
title
subjectCategory

VideoSupplier
address
name
newVideos

Basket

Shelf
location
stock

Membership
ID
startDate

PricingPolicy
perDayRentalCharge
perDayLateCharge

1

Obtains
1 1


Maintains

1
*

Determines-
rental-charge



1

*


Contains
1

*

*
1


Stores-
video-on 

Defines

1

*


Provides

1

*

*

Describes

Contains

1

0..*

Provides

1

0..*

1

1


Holds-
videos-in

1

An SD Solution for Rent Video Example

:Video

findVideoToRent(ID,duration) Loop [more items]

videoTitle, availability

Checkout

totalWithTaxes

:Customer

rentVideos

:Video
Description

getVideoInfo(ID,duration)

videoTitle, desc, availabilty

selectVideoToRent(ID)

selectedVideos(video List)

updateAvailability(ID,duration)

Homework and Milestone Reminders
  Read Chapter 17 on Responsibility Driven

Design
  Homework 3 – BBVS Logical Architecture and

Preliminary Design
 Due by 5:00pm on Tuesday, January 4th, 2011

  Milestone 3 – Junior Project SSDs, OCs, and
Logical Architecture
 Due by 11:59pm on Friday, January 7th, 2010

  5% extra credit on Milestone 3 and Homework3
if you finish by 11:59pm, Friday before break!

A CD Solution for Rent Video Example

:Video

1: FindVideoToRent(ID,duration)

1.3: videoTitle, availability
3: Checkout

3.2: totalWithTaxes

:Customer
rentVideos

:Video
Description

1.1: getVideoInfo(ID,duration)
1.2: videoTitle, desc, availabilty

2: selectVideoToRent(ID)

3.1: selectedVideos(video List)

2.1: updateAvailability(ID,duration)

