
More GoF Design Patterns:
Composite, Façade, and
Observer
Curt Clifton

Rose-Hulman Institute of Technology

GoF Pattern Taxonomy
Behavioral

Interpreter
Template Method
Chain of
Responsibility
Command
Iterator
Mediator
Memento
Observer
State
Strategy

Visitor

Creational
Factory Method

Abstract Factory
Builder
Prototype
Singleton

Structural
Adapter

Bridge
Composite
Decorator
Façade
Flyweight
Proxy

Composite

How could we handle multiple, conflicting pricing
policies?

Such as…

20% senior discount

Preferred customer discount, 15% off sales of $400

Manic Monday, $50 off purchases over $500

Buy 1 case of Darjeeling tea, get 15% off entire order

Composite Pattern

Problem: How do we handle the situation where a
group of objects can be combined but should still
support the same polymorphic methods as any
individual object in the group?

Solution: Define a composite object that implements
the same interface as the individual objects.

Q1,2Example…

Example Continued:
Dynamic Use

How do we build the
Composite Strategy?

Three places in example where new pricing strategies
can be added:

When new sale is created, add store discount policy

When customer is identified, add customer-specific
policy

When a product is added to the sale, add product-
specific policy

Adding Store Discount Policy
Singleton, Factory

Makes a Composite
to begin with. Why?

Adding Customer Specific
Discount Policy

New system
operation from
alternative use

case flow
Recall: What’s a

ref frame?

Adding Customer Specific
Discount Policy (continued)

Where did ps
come from?

How does Factory know
that ps is a composite? Q3

Applying Composite

Q4

Façade

NextGen POS needs pluggable business rules

Assume rules will be able to disallow certain actions,
such as…

Purchases with gift certificates must include just one
item

Change returned on gift certificate purchase must be
as another gift certificate

Allow charitable donation purchases, but max. of
$250 and only with manager logged-in

More general than just
Façade Controllers

Some Conceivable
Implementations

Strategy pattern

Open-source rule interpreter

Commercial business rule engine

Façade

Problem: How do we avoid coupling to a part of the
system whose design is subject to substantial change?

Solution: Define a single point of contact to the
variable part of the system—a façade object that wraps
the subsystem.

Q5

Sale methods would be designed
to check in with the façade

Observer

How do we refresh the GUI display when the domain
layer changes without coupling the domain layer back
to the UI layer?

Model-View Separation

Observer
(aka Publish-Subscribe)

Problem: Suppose some subscriber objects want to
be informed about events or state changes for some
publisher object. How do we achieve this while
maintaining low coupling from the publisher to the
subscribers?

Solution: Define an subscriber interface that the
subscriber objects can implement. Subscribers register
with the publisher object. The publisher sends
notifications to all its subscribers.

setTotal(Money newTotal)

…

…
Sale

JFrame

SaleFrame(Sale sale)

…

…
SaleFrame

Example: Update SaleFrame
when Sale’s Total Changes

onPropertyEvent(source, name, value)

«interface»
PropertyListener

onPropertyEvent(source, name, value)

addPropertyListener(PropertyListener lis)

sale.addPropertyListener(this);
…

propertyListeners.add(lis);

propertyListeners *

publishPropertyEvent(name, value)

total = newTotal;
publishPropertyEvent(“sale.total”, total);

for(PropertyListener pl : propertyListeners)
! pl.onPropertyEvent(this, name, value);

if (name.equals(“sale.total”))
! totalTextField.setText(value.toString());

Example: Update SaleFrame
when Sale’s Total Changes

Example: Update SaleFrame
when Sale’s Total Changes

setTotal(Money newTotal)

…

…
Sale

onPropertyEvent(source, name, value)

«interface»
PropertyListener

propertyListeners *

JFrame

SaleFrame(Sale sale)

…

…
SaleFrame

onPropertyEvent(source, name, value)

publishPropertyEvent(name, value)
addPropertyListener(PropertyListener lis)

{parameter}

Is UI coupled to domain layer?
Is domain layer coupled to UI?

Q6,7

Observer: Not just for GUIs
watching domain layer…

GUI widget event handling

Example:
JButton startButton = new JButton(“Start”);
startButton.addActionListener(new Starter());

Publisher: startButton

Subscriber: Starter instance

Q8

GoF Pattern Taxonomy
Behavioral

Interpreter
Template Method
Chain of
Responsibility
Command
Iterator
Mediator
Memento
Observer
State
Strategy
Visitor

Creational
Factory Method
Abstract Factory
Builder
Prototype
Singleton

Structural
Adapter
Bridge
Composite
Decorator
Façade
Flyweight
Proxy

Q9

