Some GoF Design Patterns:
Adapter, Factory,
Singleton, and Strategy

Curt Glifton
Rose-Hulman-institute:or fechnology

http://www.research.ibm.com/designpatterns/pubs/ddj-eip-award.htm

Gang of Four

Ralph Johnson, Richard Helm, Erich Gamma,
and John Vlissides (left to right)

GoF Pattern Taxonomy

Behavioral Creational

Interpreter =
Template Method n

Chain of x
Responsibility

Command
lterator
Mediator
Memento
Observer
State
Strategy
Visitor

Factory
Method
Abstract
Factory
Builder
Prototype
Singleton

Structural

Adapter
Bridge
Composite
Decorator
Facade
Flyweight
Proxy

GoF Pattern Taxonomy

Behavioral Creational Structural
Factory Method = Adapter
Abstract Factory x

Composite

Singleton Facade

Proxy

Observer
State
Strategy

Adapter Pattern

= Problem: How do we provide a single, stable interface
to similar components with different interfaces

x Solution: Use an intermediate adapter object to
convert calls to the appropriate interface for each
component

Adapter Examples

«interface» Adapt
ITaxCalculatorAdapter polym
indires
getTaxes(Sale) : List of TaxLineltems comp
R
TaxMasterAdapter GoodAsGoldTaxPro

Adapter

getTaxes(Sale) : List of TaxLineltems

getTaxes(Sale) : List of TaxLineltems

«interface»

<<ir

T \ h GreditAut!
Guideline: Use pattern names In type names o

postSale(Sale)

requestApproval(CreditPe

GRASP Principles in
Adapter?

x | ow coupling? Polymorphism?

High cohesion? Pure Fabrication?

Information Expert? Indirection”?

Creator? Protected Variations?

controller?

SO why bother learning patterns?

Factory

» Problem: \Who should be responsible for creating
objects when there are special considerations like:

x Complex creation logic
x Separating creation to improve cohesion
x A need for caching
x Solution: Create a Pure Fabrication called a Factory to

handle the creation Also known as Simple Factory

or Concrete Factory

Factory Example

ServicesFactory

accountingAdapter : IAccountingAdapter
inventoryAdapter : linventoryAdapter
taxCalculatorAdapter : ITaxCalculatorAdapter

getAccountingAdapter() : IAccountingAdapter o

getinventoryAdapter() : linventoryAdapter

getTaxCalculatorAdapter() : ITaxCalculatorAdapter
O-.....

note that the factory methods
return objects typed to an

| interface rather than a class, so

that the factory can return any
implementation of the interface

A

if (taxCalculatorAdapter == null)

{

/l external property

}

return taxCalculatorAdapter;

// a reflective or data-driven approach to finding the right class: read it from an

String className = System.getProperty("taxcalculator.class.name");
taxCalculatorAdapter = (ITaxCalculatorAdapter) Class.forName(className).newlInstance();

Another Factory Example

javax.aql
Interface DataSource |

All Superinterfaces:
CommonDataSewrce. Wrapper

public interfate Datasource
extends CONNONDALASOUrOS, NIiasear

factory for connections to the physical data source that this DatasSource object represen
D

a Groe object is the preferred means of getting a connection, An object that implermen
with a raming service based on the Java™ Naming and Directory (JNDI) APL

Advantages of Factory

Puts responsibility of creation logic Into a separate,
cohesive class—separation of concerns

Hides complex creation logic
Allows performance enhancements:
x Object caching

= Recycling

Working for Google

HAVE YoU READ ASOUT || MAN, T AINT GONNA BE CHAINED ¢ S0, WHAT, THEY

GOOGLE HG? IT SouNS || DOWN IN No CORFORATE. I0EA FACTORY, TURNED YoU DOWN?

LIKE AN INCREDIBLE || THEY THWK JUST CAUSE THEYVE GOT A .

PLACE TO WORK. || NICE BULDNG AND A LAID-BACK CUCTURE, \‘ m"m%"%m
[M GONNA WANT T CovE W ALL DAY LONG ~

AND WORK ON FRSCINATING PROBLENS ~ A CAKE

l
% % WITH THE SMARTEST PEDPLE. IN THE NORLD.
[}

http://xkcd.com/192/

| hear once you've worked there for 256 days
they teach you the secret of levitation.

Singleton

Who creates the Factory?

® Several classes need to access Factory methods

x Options: / Dependency Injection

®x Pass instance of Factory to classes that need it

x Provide global visibility to a Factory instance

5

Singleton

Singleton

= Problem: How do we ensure that exactly one instance
of a class is created and is globally accessible”

» Solution: Define a static method in the class that
returns the singleton instance

A

UML notation: in a
class box, an
underlined attribute or
method indicates a
static (class level)
member, rather than
an instance member

UML notation: this '1' can optionally be used to
indicate that only one instance will be created (a
singleton)

ServicesFactory

instance : ServicesFactory

accountingAdapter : IAccountingAdapter
inventoryAdapter : linventoryAdapter
taxCalculatorAdapter : ITaxCalculatorAdapter

singleton static
attribute

getinstance() : ServicesFactory

0

| getAccountingAdapter() : IAccountingAdapter
getinventoryAdapter() : linventoryAdapter
getTaxCalculatorAdapter() : ITaxCalculatorAdapter

singleton
static
method

/I static method
public static synchronized ServicesFactory getlnstance()
{
if (instance == null)

instance = new ServicesFactory()
return instance

}

A

Lazy vs. Eager Initialization

= | azy:
= private static Servicesfactory. instance;
public static synchronized Services Factory getinstance() {
if (instance == null)
instance = new ServicesFactory();
return instance,

/

x Fager:
®x private static ServicesrFactory instance = new Servicesfactory();
public static Services Factory getinstance() {

return instance,
} Pros and cons”?

Why don't we just make all
the methods static?

x |nstance methods
permit subclassing

» |nstance method allow
easlier migration to
“multi-ton” status

ServicesFactory

instance : ServicesFactory

accountingAdapter : |AccountingAdapter
inventoryAdapter : linventoryAdapter
taxCalculatorAdapter : ITaxCalculatorAdapter

getinstance() : ServicesFactory

Ke

getAccountingAdapter() : IAccountingAdapter
getinventoryAdapter() : linventoryAdapter
getTaxCalculatorAdapter() : ITaxCalculatorAdapter

Singleton Considered
Harmful’?

Favor Dependency

/ Injection

Hides dependencies by introducing global visibility

Hard to test since it introduces global state (also leaks
resources)

A singleton today Is a multi-ton tomorrow

Low cohesion — class Is responsible for domain duties

and for limiting numler of instances

"\ Instead, use Factory to
http://blogs.msdn.com/scottdensmore/archive/2004/05/25/140827 .aspx COntrOl InStance Creatlon

http://tech.puredanger.com/2007/07/03/pattern-hate-singleton/ Q 7

Strategy

= Problem: How do we design for varying, but related,
algorithms or policies?

x Solution: Define each algorithm or policy in a separate
class with a common interface.

Strategy Example

pdt = s.getPreDiscountotal();
{paraneter} Iif (,Odt < l‘hl’eShO/O')
return pat;

«interfac
ISalePricingS else

return pdt - discount;

| |
| |
PercentDiscount AbsoluteDiscount
OverThreshold ‘ PricingStrategy
PricingStrategy P
getTotal(s:Sale) : Money discount : Money ‘ ..]
threshold : Money

getTotal(s:Sale) : Money

return s.getPreDiscountiotal() * percentage;

Strategy Example (cont.

| |

t = getTotal | :
|

|

[]
m st = getSubtotal —
|

|
I pdt = getPreDiscountTotal

I | t = getTotal(s)
S B E—

s - Sale lineltems[i] : :PercentDiscount
' SalesLineltem PricingStrategy
|
|

{t = pdt * percentage }

note that the Sale s is
passed to the Strategy so
that it has parameter
visibility to it for further
collaboration

Where does the
PricingStrategy come from?

1

| Dependency Injection?

instance : PricingStrategyFactor

etlnstance() : PricingStrateqyFactor

getSalePricingStrategy() : ISalePricingStrategyo.
getSeniorPricingStrategy() : ISalePricingStrategy ..

. 1 1
:PricingStrategyFactory

makeNewSale) :

ps =

D getSalePricingStrategy

