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Adapter Pattern

= Problem: How do we provide a single, stable interface
to similar components with different interfaces

x Solution: Use an intermediate adapter object to
convert calls to the appropriate interface for each
component




Adapter Examples

«interface» Adapt
ITaxCalculatorAdapter polym
indires
getTaxes( Sale ) : List of TaxLineltems comp
R
TaxMasterAdapter GoodAsGoldTaxPro

Adapter

getTaxes( Sale ) : List of TaxLineltems

getTaxes( Sale ) : List of TaxLineltems

«interface»

<<ir

T \ h GreditAut!
Guideline: Use pattern names In type names o

postSale( Sale )

requestApproval(CreditPe




GRASP Principles in
Adapter?

x | ow coupling? Polymorphism?

High cohesion? Pure Fabrication?

Information Expert? Indirection”?

Creator? Protected Variations?

controller?

SO why bother learning patterns?




Factory

» Problem: \Who should be responsible for creating
objects when there are special considerations like:

x Complex creation logic
x Separating creation to improve cohesion
x A need for caching
x Solution: Create a Pure Fabrication called a Factory to

handle the creation Also known as Simple Factory

or Concrete Factory




Factory Example

ServicesFactory

accountingAdapter : IAccountingAdapter
inventoryAdapter : linventoryAdapter
taxCalculatorAdapter : ITaxCalculatorAdapter

getAccountingAdapter() : IAccountingAdapter o

getinventoryAdapter() : linventoryAdapter

getTaxCalculatorAdapter() : ITaxCalculatorAdapter
O-.....

note that the factory methods
return objects typed to an

| interface rather than a class, so

that the factory can return any
implementation of the interface

A

if (taxCalculatorAdapter == null )

{

/l external property

}

return taxCalculatorAdapter;

// a reflective or data-driven approach to finding the right class: read it from an

String className = System.getProperty( "taxcalculator.class.name" );
taxCalculatorAdapter = (ITaxCalculatorAdapter) Class.forName( className ).newlInstance();




Another Factory Example

javax.aql
Interface DataSource |

All Superinterfaces:
CommonDataSewrce. Wrapper

public interfate Datasource
extends CONNONDALASOUrOS, NIiasear

factory for connections to the physical data source that this DatasSource object represen
D

a Groe object is the preferred means of getting a connection, An object that implermen
with a raming service based on the Java™ Naming and Directory (JNDI) APL




Advantages of Factory

Puts responsibility of creation logic Into a separate,
cohesive class—separation of concerns

Hides complex creation logic
Allows performance enhancements:
x Object caching

= Recycling




Working for Google

HAVE YoU READ ASOUT || MAN, T AINT GONNA BE CHAINED ¢ S0, WHAT, THEY

GOOGLE HG? IT SouNS || DOWN IN No CORFORATE. I0EA FACTORY, TURNED YoU DOWN?

LIKE AN INCREDIBLE || THEY THWK JUST CAUSE THEYVE GOT A .

PLACE TO WORK. || NICE BULDNG AND A LAID-BACK CUCTURE, \‘ m"m%"%m
[ M GONNA WANT T CovE W ALL DAY LONG ~
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l
% % WITH THE SMARTEST PEDPLE. IN THE NORLD.
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http://xkcd.com/192/

| hear once you've worked there for 256 days
they teach you the secret of levitation.




Singleton




Who creates the Factory?

® Several classes need to access Factory methods

x Options: / Dependency Injection

®x Pass instance of Factory to classes that need it

x Provide global visibility to a Factory instance

5

Singleton




Singleton

= Problem: How do we ensure that exactly one instance
of a class is created and is globally accessible”

» Solution: Define a static method in the class that
returns the singleton instance




A

UML notation: in a
class box, an
underlined attribute or
method indicates a
static (class level)
member, rather than
an instance member

UML notation: this '1' can optionally be used to
indicate that only one instance will be created (a
singleton)

ServicesFactory

instance : ServicesFactory

accountingAdapter : IAccountingAdapter
inventoryAdapter : linventoryAdapter
taxCalculatorAdapter : ITaxCalculatorAdapter

singleton static
attribute

getinstance() : ServicesFactory

0

| getAccountingAdapter() : IAccountingAdapter
getinventoryAdapter() : linventoryAdapter
getTaxCalculatorAdapter() : ITaxCalculatorAdapter

singleton
static
method

/I static method
public static synchronized ServicesFactory getlnstance()
{
if (instance == null)

instance = new ServicesFactory()
return instance

}

A




Lazy vs. Eager Initialization

= | azy:
= private static Servicesfactory. instance;
public static synchronized Services Factory getinstance() {
if (instance == null)
instance = new ServicesFactory();
return instance,

/

x Fager:
®x private static ServicesrFactory instance = new Servicesfactory();
public static Services Factory getinstance() {

return instance,
} Pros and cons”?




Why don't we just make all
the methods static?

x |nstance methods
permit subclassing

» |nstance method allow
easlier migration to
“multi-ton” status

ServicesFactory

instance : ServicesFactory

accountingAdapter : |AccountingAdapter
inventoryAdapter : linventoryAdapter
taxCalculatorAdapter : ITaxCalculatorAdapter

getinstance() : ServicesFactory

Ke

getAccountingAdapter() : IAccountingAdapter
getinventoryAdapter() : linventoryAdapter
getTaxCalculatorAdapter() : ITaxCalculatorAdapter




Singleton Considered
Harmful’?

Favor Dependency

/ Injection

Hides dependencies by introducing global visibility

Hard to test since it introduces global state (also leaks
resources)

A singleton today Is a multi-ton tomorrow

Low cohesion — class Is responsible for domain duties

and for limiting numler of instances

"\ Instead, use Factory to
http://blogs.msdn.com/scottdensmore/archive/2004/05/25/140827 .aspx COntrOl InStance Creatlon

http://tech.puredanger.com/2007/07/03/pattern-hate-singleton/ Q 7




Strategy

= Problem: How do we design for varying, but related,
algorithms or policies?

x Solution: Define each algorithm or policy in a separate
class with a common interface.




Strategy Example

pdt = s.getPreDiscountotal();
{paraneter} Iif (,Odt < l‘hl’eShO/O')
return pat;

«interfac
ISalePricingS else

return pdt - discount;

| |
| |
PercentDiscount AbsoluteDiscount
OverThreshold ‘ PricingStrategy
PricingStrategy P
getTotal(s:Sale) : Money discount : Money ‘ .. ]
threshold : Money

getTotal(s:Sale) : Money

return s.getPreDiscountiotal() * percentage;




Strategy Example (cont.

| |

t = getTotal | :
|

|

[ ]
m st = getSubtotal —
|

|
I pdt = getPreDiscountTotal

I | t = getTotal( s)
S B E—

s - Sale lineltems[i] : :PercentDiscount
' SalesLineltem PricingStrategy
|
|

{t = pdt * percentage }

note that the Sale s is
passed to the Strategy so
that it has parameter
visibility to it for further
collaboration




Where does the
PricingStrategy come from?

1

| Dependency Injection?

instance : PricingStrategyFactor

etlnstance() : PricingStrateqyFactor

getSalePricingStrategy() : ISalePricingStrategyo.
getSeniorPricingStrategy() : ISalePricingStrategy ..

. 1 1
:PricingStrategyFactory

makeNewSale ) :

ps =

D getSalePricingStrategy




