
GRASP
Curt Clifton

Rose-Hulman Institute of Technology



General,
Responsibility Assignment
Software Patterns Principles



Low Coupling



Coupling

A measure of how strongly one element is connected 
to, has knowledge of, or relies on other elements

Want low (or weak) coupling

Several problems with high (strong) coupling…

An evaluative principle

Q1



Example

Suppose we need to 
create a Payment 
instance and associate 
it with a Sale

Who should be 
responsible?

Payment

Register

Sale



Option 1



Option 2



Lower Coupling?



Common Couplings

A has an attribute of type B

A calls a static method of B

A has a method with a parameter or variable of type B

A implements an interface B

A is a subclass of B
Very strong coupling



Pick Your Battles

Coupling to stable, pervasive elements isn’t a problem

E.g., java.util.ArrayList

Coupling to unstable elements can be a problem

Unstable interface, implementation, or presence

Clearly can’t eliminate coupling completely!



High Cohesion



Cohesion

A measure of how strongly related and focused the 
responsibilities of a class (or method or package…) are

Want high cohesion

Several problems with low cohesion…

An evaluative principle

Q2



Higher Cohesion?



Guideline

A highly cohesive class…

Has a small number of highly related methods

Does not do “too much” work



Contraindications

Sometimes lower cohesion is necessary for efficiency

E.g., setEmployeeData 
vs. setName, setSalary, and setHireData
in a networked application



Information Expert



Information Expert

Problem: What is a general principle of assigning 
responsibilities?

Solution: Assign a responsibility to the class that has 
the necessary information

perhaps the most 
general principle

Q3,4



Where do we look for 
classes?

In the Design model if the relevant classes are there

Otherwise:

Look to Domain model for motivation,

then add classes to the Design model



Information Expert Examples

Who should be responsible for knowing the grand total 
of a Sale?

Given that a Piece just landed on a Square, who should 
be responsible for calculating the rent due?

Q5



Information Expert 
Contraindications

Sometimes Information Expert will suggest a solution 
that leads to coupling or cohesion problems

Consider: Who should be responsible for saving a 
Sale in a database?

Q6



If you think this is too hard on literary criticism, 
read the Wikipedia article on deconstruction.

Imposter

http://xkcd.com/451/



Creator



Creator

Problem: Who should be responsible for creating a 
new instance of some class?

Solution: Make B responsible for creating A if…

B contains or is a composition of A

B records A

B closely uses A

B has the data to initialize A
The more matches 

the better.

Most important

Q7,8



Creator Examples

In Monopoly simulator, who should create…

Squares?

Pieces?

Dice?

In NextGen POS, who should create…

SalesLineItems?

ProductDescriptions?

Q9



Creator Contraindications

Complex creation 
scenarios

Recycling instances

Conditional creation

Q10



Team Creativity

Q11



Controller



Controller

Problem: What first object beyond the UI layer 
receives and coordinates a system operation

Solution: Assign the responsibility to either…

A façade controller, representing the overall system 
and handling all system operations, or

A use case controller, that handles all system events 
for a single use case

What’s that?

Q12,13Not JFrame, not JPanel, …



Example

What domain layer 
class should own 
handling of the 
enterItem system 
operation?



Guidelines

Controller should delegate to other domain layer 
objects

Use façade controller when…

There are a limited number of system operations, or

When operations are coming in over a single “pipe”

Use use case controller when a façade would be 
bloated (low cohesion!)



Controller Benefits

Increased potential for reuse

Can reason/control the state of a use case

E.g., don’t close sale until payment is accepted



Controller Issues

Controller bloat—too many system operations

Controller fails to delegate tasks

Controller has many attributes

Switch from façade to 
use case controllers

Delegate!



Team Control

Q14,15


