
Logical Architecture, 
Package Design
Curt Clifton

Rose-Hulman Institute of Technology

Q1



Where Are We?

Package Diagram/

Logical Architecture

Domain Model

Use Case Model 
including System 

Sequence Diagrams 
and Operation 

Contracts

Design Model



Layered Architectures

Coarse-grained 
grouping of 
components based on 
shared responsibility 
for major aspects of 
system

Typically higher layers 
call lower ones, 
but not vice-versa



Software architecture: the large-scale 
motivations, constraints, organization, 
patterns, responsibilities, and connections 
of a system

Structure and 

connections

Components, 
connectors, and 

topology



Why Worry about 
Architecture?

Analyze the effectiveness of a design

Consider alternatives before significant investment

Reduce risk

Provide abstractions for reasoning about design

Plan for implementation



UML Package Diagrams

Describes grouping of elements

Can group anything:

Classes

Other packages

More general than Java packages or C# namespaces

Q2



UML Package Diagrams

UI

Swing Web

Domain

Sales

Package 
Names

Dependency 
Line

Fully qualified name is: 
Domain::Sales



Alternative Nesting Notations

Q3



Designing with Layers 
Solves Problems

Rippling source code 
changes

Intertwining of 
application and UI logic

Intertwining of 
application logic and 
technical services

Difficult division of labor

Q4



Layers of Benefits

Separation of concerns

Reduces coupling and dependencies; improves 
cohesion; increases reuse potential and clarity

Essential complexity is encapsulated

Can replace some layers with new implementations

Can distribute some layers

Can divide development within/across teams



Common Layers in
More Detail

UI

Application

Domain

Business Infrastructure

Technical Services

Foundation

Systems will have 
many, but not 

necessarily all, of these

Q5



Designing the Domain Layer

Create software 
objects with names 
and information similar 
to the real-world 
domain

Assign application logic 
responsibilities

amount

Payment

date

time

Sale

1

1

PaysFor Domain 

Model

getBalance(): Money

amount: Money

Payment

getTotal(): Money

applyPayment(pmt: Payment)

date: Date

startTime: Time

Sale

1

1

PaysFor
Software 

Domain 

Layer

“Domain Objects” Q6



Terminology:
Layers vs. Partitions

Layers

Partitions

Q7



Common Mistake: Showing 
External Resources

Worse Better



Viruses so far have been really disappointing on the 
'disable the internet' front, and time is running out. When 
Linux/Mac win in a decade or so the game will be over.

ht
tp

:/
/x

kc
d.

co
m

/3
50

/



Model-View Separation 
Principle

Do not connect non-UI objects directly to UI objects

A Sale object shouldn’t have a reference to a JFrame

Do not put application logic in UI object methods

A UI event handler should just delegate to the 
domain layer

Model == domain layer, View == UI layer

Easiest way to recognize an OO amateur!

Q8



Benefits of
Model-View Separation

Provides cohesive model definitions

Enables separate development

Localizes changes to interface requirements

Can add new views

Allows simultaneous views

Allows execution of model without UI



From SSDs to Layers

System operations on the SSDs will become the 
messages sent from the UI layer to the domain layer

Q9



What’s Next?



Techniques for
Object Design



Common Object Design 
Techniques

Just code it: design while coding, heavy emphasis on 
refactoring and powerful IDEs

Draw, then code: sketch some UML, then code it

Just draw it: generate code from diagrams

http://www.virginmedia.com/movies/galleries/previews/indiana-jones-idols.php?ssid=7



Static vs. Dynamic Modeling

Static models

Class diagrams 

Dynamic models

Sequence diagrams

Communication 
diagrams

Q10

Interaction 
diagrams

Spend time on interaction 
diagrams, not just class diagrams



CRC Cards: 
A text-based technique

Class

Responsibilities

Collaborators

MailBox

list messages

store messages Message



What Matters Most?

Principles of assigning responsibilities to objects

Design patterns


