
10/22/24

1

Transformers	– Part	2
Summary	of	Chapter	10	from

Speech	and	Language	Processing,	
Jurafsky and	Martin,	Aug.	20,	2024	draft

Michael	Wollowski

Transformers

Source:	https://www.comet.com/site/blog/explainable-ai-for-transformers/

10/22/24

2

Review	of	Databases

Image	source:	Arjun	Sakar:	All	you	need	to	know	about	‘Attention’	and	‘Transformers’	- In-depth	Understanding	— Part	1

Reminder:	Dot	Product

• Definition:	

• Outcome:	Can	be	used	to	calculate	the	similarity	between	two	
vectors.

10/22/24

3

“Database	
retrieval”	
in	Transformers

Image	source:	Modified	from	Speech	and	Language	Processing,	Jurafsky and	Martin,	Feb.	3,	2024	draft

Starting	at	the	bottom,	we	
calculate	the	dot	product	
between:
X3 and	X3
X3 and	X2
X3 and	X1

This	should	give	us	a	
similarity	of	the	prior	
tokens	to	X3

“Database	
retrieval”	
in	Transformers

Image	source:	Modified	from	Speech	and	Language	Processing,	Jurafsky and	Martin,	Feb.	3,	2024	draft

Next,	we	normalize	the	
values	of	the	dot	product.

Otherwise	the	values	may	
be	quite	large	and	impede	
training,	due	to	loss	of	
gradients.

We	divide	by	the	square	
root	of	the	dimensionality	
of	the	key	vector,	dk

10/22/24

4

“Database	
retrieval”	
in	Transformers

Image	source:	Modified	from	Speech	and	Language	Processing,	Jurafsky and	Martin,	Feb.	3,	2024	draft

Now,	we	run	the	values	
through	softmax to	obtain	
weights.

These	weights	are	now	
used	to	determine	the	
relevance	of	each	of	X1 to	
X3

Finally,	we	sum	up	those	
weights	which	gives	the	
output.

Reminder:	Softmax

• Definition:

• The	softmax function	takes	as	input	a	vector	and:
• turns	each	component	into	an	interval	 (0,1)
• the	components	will	add	up	to	1,	
• they	can	be	interpreted	as	probabilities

.

10/22/24

5

“Database	
retrieval”	in	
Transformers

Image	source:	Speech	and	Language	Processing,	Jurafsky and	Martin,	Feb.	3,	2024	draft

We	should	add	some	weights.

After	all	that	is	what	NNs	are	
all	about.

More	seriously,	it	enables	us	
to	move	away	from	a	very	
static	distance	measure	to	
one	that	can	be	trained,	
based	on	a	token’s	context.

Multi-head	Attention

• In	the	context	of:	

• We	will	add	more	than	one	attention	head!
• More	attention	heads,	more	weights,	more	things	to	pay	attention	to.
• Recall	that	for	CNNs,	we	applied	several	filters	to	a	matrix,	to	“look”	
at	different	aspects	of	an	image.

Image	source:	https://muppet.fandom.com/wiki/Me_Want_Cookie?file=MeWantCookie.jpg

10/22/24

6

BertViz shows that
attention captures
various patterns in
language,
including
positional patterns,
delimiter patterns,
and bag-of-words.

Source:	https://www.comet.com/site/blog/explainable-ai-for-transformers/

Multi-head	Attention

• Each	of	the	multi-head	
self-attention	layers	is	
provided	with	its	own	
set	of	key,	query	and	
value	weight	matrices.	
• The	outputs	from	each	
of	the	layers	are	
concatenated.
• They	are	then	projected	
to	d.
• Thus	producing	an	
output	of	the	same	size	
as	the	input.

10/22/24

7

Transformer	Blocks

• The	self-attention	
calculation	lies	at	the	core	of	
what	is	called	a	transformer	
block.
• In	addition	to	the	self-
attention	layer,	it	includes	
feedforward	layers,	residual	
connections,	and	
normalizing	layers.	

Transformer	Blocks

• Feedforward	layer:	It	contains	N	position-wise	networks,	one	at	each	
position.	
• Each	is	a	fully-connected	2-layer	network,	i.e.,	one	hidden	layer,	two	
weight	matrices.	
• The	weights	are	the	same	for	each	position,	but	the	parameters	are	
different	from	layer	to	layer.	

10/22/24

8

Transformer	Blocks

• Residual	connections:	They	pass	information	from	a	lower	layer	to	a	
higher	layer	without	going	through	the	intermediate	layer.
• Layer	normalization	(Layer	norm).	Summed	vectors	are	normalized.
• It	is	used	to	improve	training	performance	in	deep	neural	networks.
• It	keeps	the	values	of	a	hidden	layer	in	a	range	that	facilitates	
gradient-based	training.	
• Layer	norm	z-score,	from	statistics	applied	to	a	single	vector	in	a	
hidden	layer.	

Transformer	Block:	Layer	Normalization

• Typical:	z-score

• Z	=	standard	score
• X	=	observed	value
• μ =	mean	of	sample
• σ = standard	deviation	of	the	sample

10/22/24

9

Residual	Stream	View	of	the	Transformer

• An	alternate	view	of	a	transformer	
is	to	trace	the	processing	of	an	
individual	token	vector	xi.
• The	output	of	the	feedforward	
and	multi-head	attention	layers	
are	added	to	xi.
• The	Multi	Head	Attention	
component	reads	information	
from	the	other	residual	streams	in	
the	context.	

Moving	Information

• As	such,	the	attention	head	can	
move	information	from	token	
A’s	residual	stream	into	token	
B’s	residual	stream.	

10/22/24

10

Embeddings and	Such

• A	token	embedding	is	a	vector	of	dimension	d	that	will	be	the	
initial	representation	for	the	input	token.
• As	the	vector	is	passed	up	through	the	transformer	layers	in	
the	residual	stream,	this	embedding	representation	will	change	
and	grow,	incorporating	context	and	playing	a	different	role	
depending	on	the	kind	of	language	model	we	are	building	

Embeddings and	Such

• Given	an	input	token	string	like	“thanks	for	all	the”	the	transformer	
architecture	first	convert	the	tokens	into	vocabulary	indices.
• Let	V	be	the	vocabulary	and	|V|	be	the	size	of	V.
• Let	E	be	the	embedding	matrix.
• The	representation	of	“thanks	for	all	the”	might	be	
w	=	[5,	4000,	10532,	2224].	

• We	treat	the	values	of	w	as	indices	to	corresponding	
rows	from	E,	(row	5,	row	4000,	row	10532,	row	2224).	

10/22/24

11

One	hot-hot-hot	vector

• In	a	one-hot vector	all	the	elements	are	0	except	for	one,	the	element	
whose	dimension	is	the	word’s	index	in	the	vocabulary.
• If	the	word	“thanks”	has	index	5	in	the	vocabulary,	then	x5 =1,	and	all	
other	xi =0	
[0 0 0 0 1 0 0 ... 0 0 0 0]
1 2 3 4 5 6 7 |V|

Selecting	the	token	embedding

Multiplying	E by	a	one-hot	vector	that	has	only	one	non-zero	element	xi =	
1	simply	selects	the	relevant	row	vector	for	word	i,	resulting	in	the	
embedding	for	word	i.

10/22/24

12

Storing	all	of	the	N	input	tokens

To	represent	the	entire	token	sequence,	we	multiply	all	N one-hot	
vectors	with	E.

Positions

• While	the	order	in	which	the	N	tokens	are	inserted	represents	word	
order,	this	is	not	sufficient.	
• Recall	that	attention	heads	can	move	tokens	around.
• We	wish	to	associate	with	each	word	the	order	in	which	it	appeared	
in	the	text.	
• We	will	create	position	embeddings.
• For	example,	just	as	we	have	an	embedding	for	the	word	fish,	we	will	
have	an	embedding	for	position	3.

10/22/24

13

Positions

• The	positions	are	absolute.
• We	do	not	simply	use	integers.	
• To	be	consistent,	we	use	vectors	of	the	same	dimensionality	as	the	
token	embeddings
• The	vectors	are	initialized	with	random	numbers.

Positions

• The	positional	embeddings are	learned	along	with	other	parameters	
during	training.	
• Recall	that	token	embeddings were	learned	at	some	point	in	time.
• To	produce	an	input	embedding	that	captures	positional	information,	
we	just	add	the	word	embedding	for	each	input	to	its	corresponding	
positional	embedding.	

10/22/24

14

Positions

Combining	word	embeddings with	positions.

The	Language	Modelling	Head

• Language	models	are	word	predictors.
• For	example,	if	the	preceding	context	is	“Thanks	for	all	the”	and	we	
want	to	know	how	likely	the	next	word	is	“fish”	we	would	compute:

P(fish|Thanks for	all	the)
• The	language	modeling	head	takes	the	output	of	the	final	transformer	
layer.
• It	looks	at	the	last	token	N.
• Predicts	the	upcoming	word	at	position	N	+	1.

10/22/24

15

The	Language	Modelling	Head

The	Language	Modelling	Head
The	unembedding layer	takes	as	
input	a	vector	of	size	d.

It	needs	to	produce	an	output	of	size	
|V|.

Conveniently,	the	input	embeddings
are	of	size	|V|

Let’s	take	the	transpose	of	the	input	
embeddings matrix.	

10/22/24

16

Encoder	
Architecture

10/22/24

17

Parallelizing	Self-Attention

• So	far,	we	computed	a	single	output	at	a	single	time	step	i.	
• Each	output,	yi,	is	computed	independently.
• The	calculation	can	be	parallelized.
• We	pack	the	input	embeddings of	the	N	tokens	of	the	input	sequence	
into	a	singlematrix	X∈ RN×d

• Each	row	of	X is	the	embedding	of	one token	of	the	input.	
• Transformers	for	large	language	models	can	have	an	input	length	N	=	
1024,	2048,	or	4096	tokens.
• X has	between	1K	and	4K	rows,	each	of	the	dimensionality	of	the	
embedding	d.	

Parallelizing	Self-Attention

• We	multiply	X	by	the	key,	query,	and	value	matrices.
• They	all	are	of	size	d x	d.
• This	produces	matrices	Q	∈ RN×d ,	K	∈ RN×d ,	and	V	∈ RN×d

• And	the	query,	key,	and	value	vectors:	
Q=XWQ;	 K=XWK;	V=XWV

• Given	these	matrices	we	can	compute	all	the	requisite	query-key	
comparisons	simultaneously	by	multiplying	Q	and	KT in	a	single	matrix	
multiplication.
• The	product	is	of	shape	N	× N.

10/22/24

18

Masking	out	the	Future

• The	self-attention	computation	has	a	
problem:	the	calculation	in	QKT results	in	a	
score	for	each	query	value	to	every	key	
value,	including	those	that	follow	the	
query.	
• This	is	inappropriate	in	the	setting	of	
language	modeling:	guessing	the	next	
word	is	pretty	simple	if	you	already	know	
it!	
• Hence,	the	upper-triangle	portion	of	
the	comparisons	matrix	set	to	−∞.
• Softmax will	turn	them	into	zeros	

Image	source:	Speech	and	Language	Processing,	Jursafky and	Martin,	Jan.	12,	2022	draft

