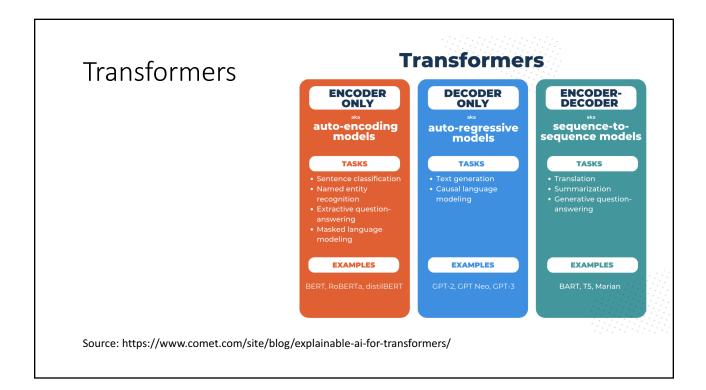
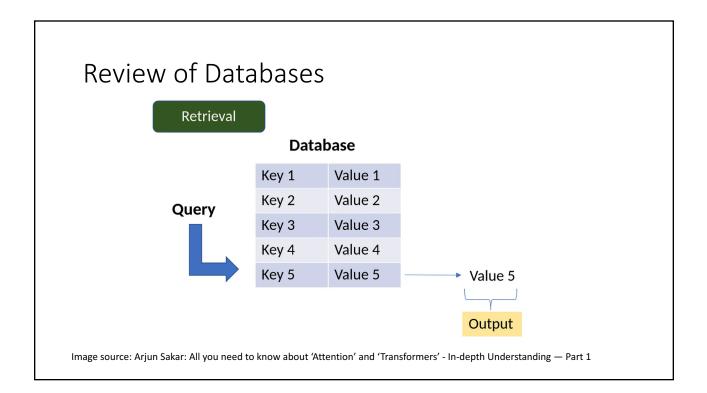
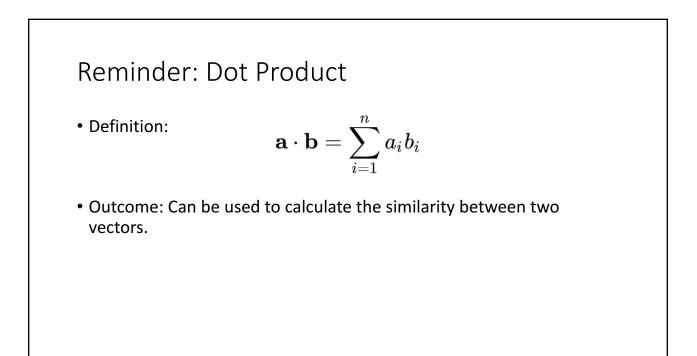
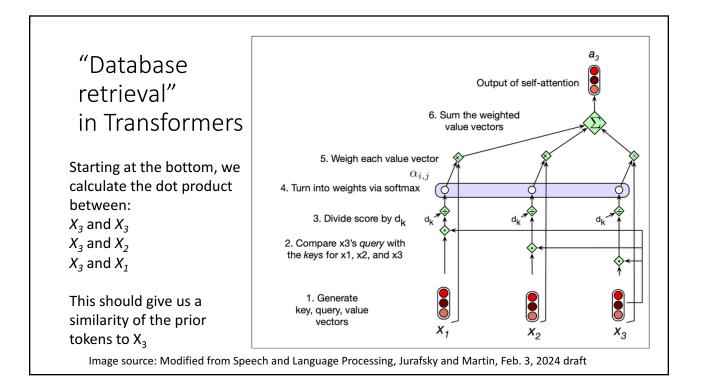
Transformers – Part 2

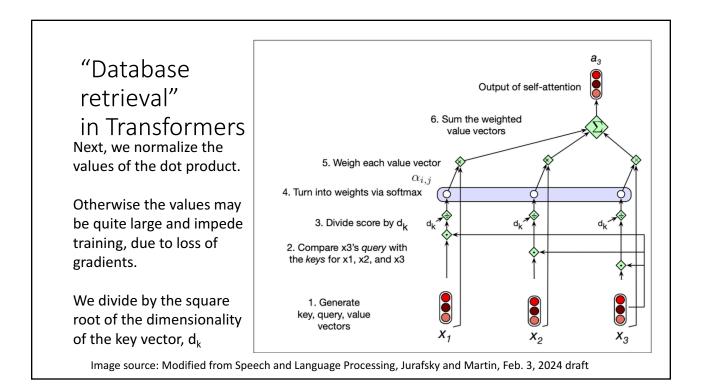
Summary of Chapter 10 from Speech and Language Processing, Jurafsky and Martin, Aug. 20, 2024 draft Michael Wollowski

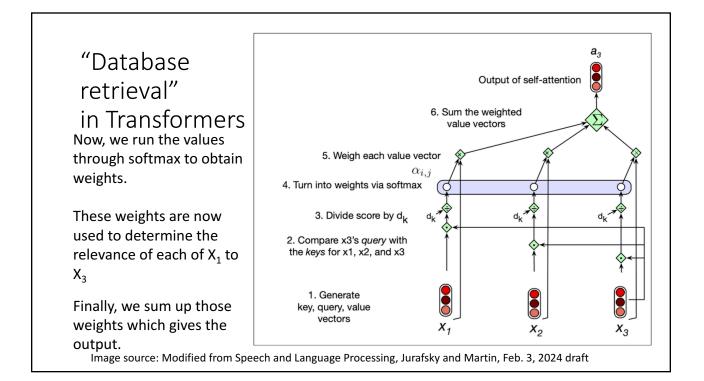


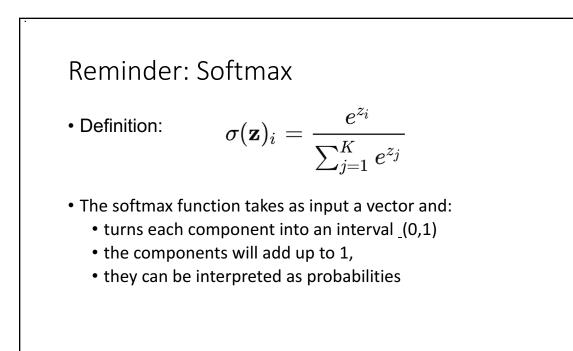


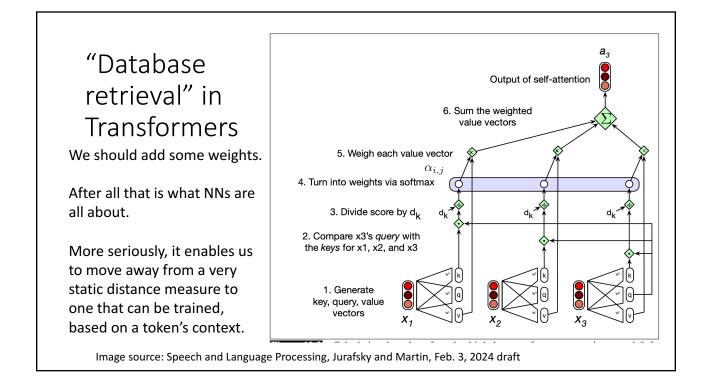


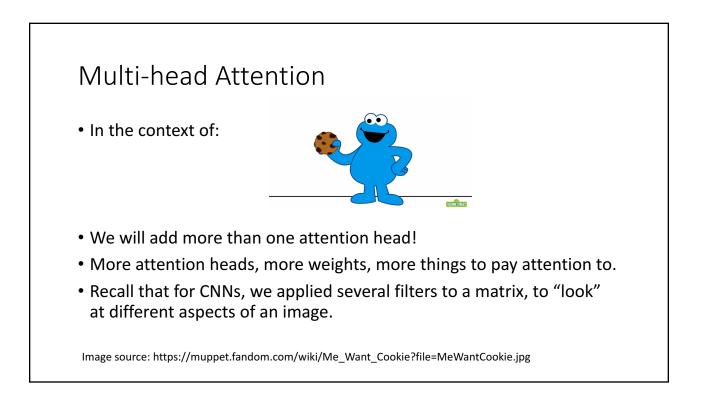


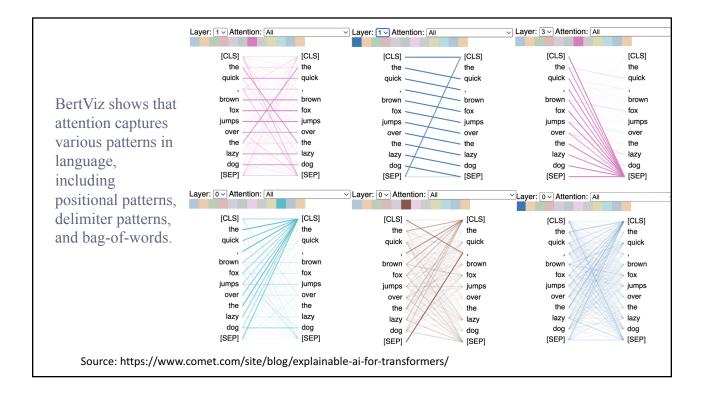


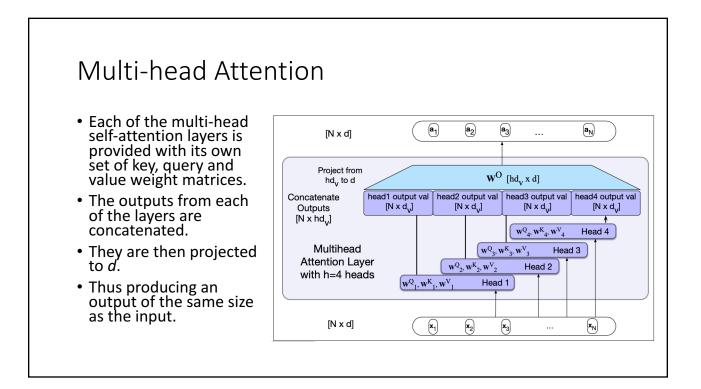


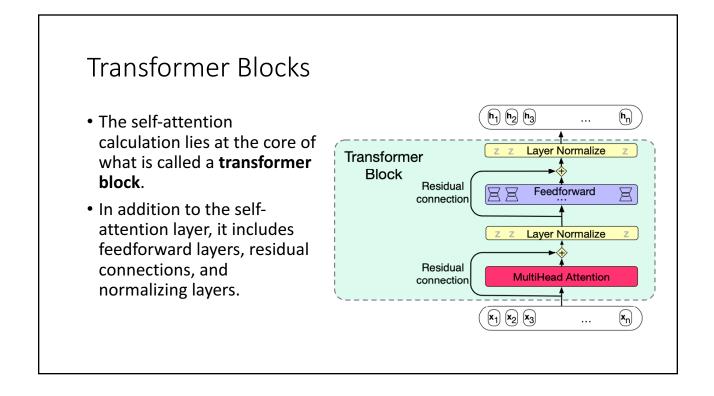


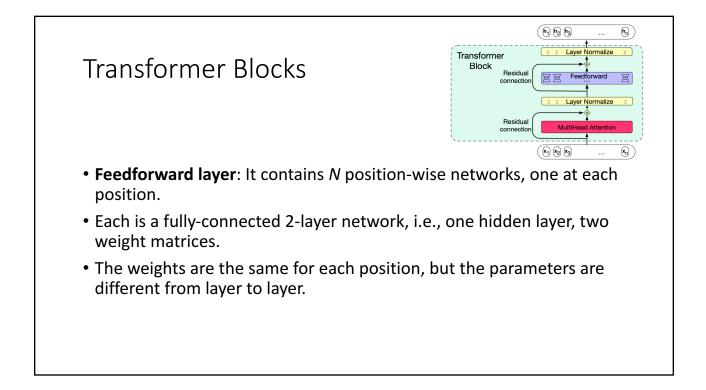


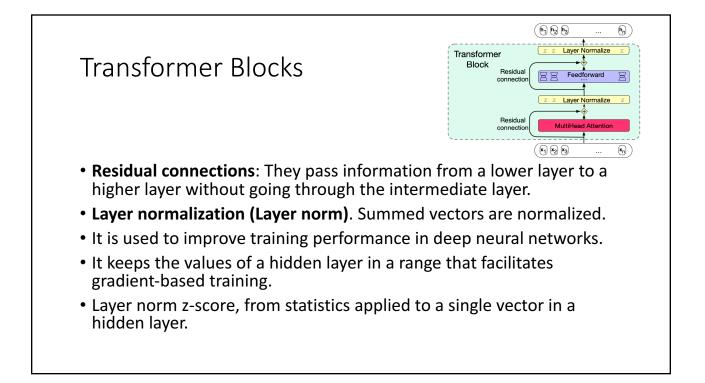


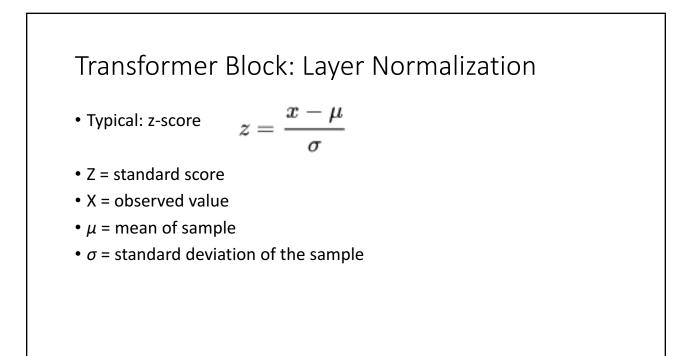


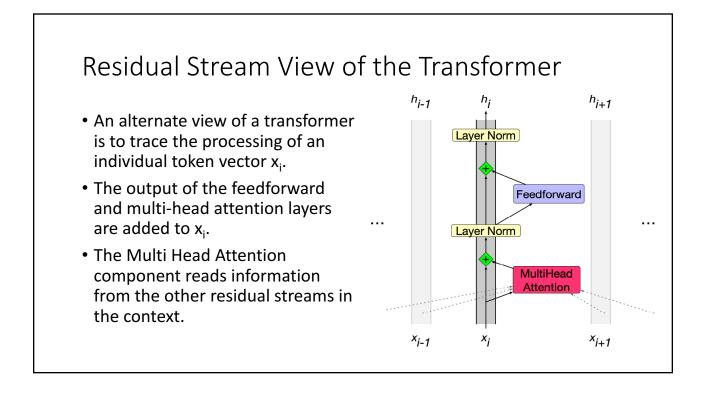


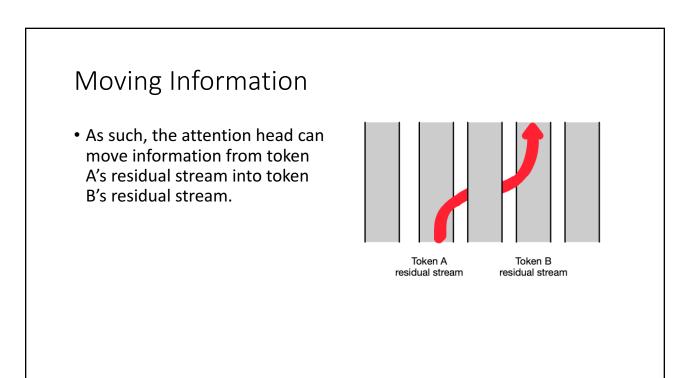












Embeddings and Such

- A token embedding is a vector of dimension *d* that will be the initial representation for the input token.
- As the vector is passed up through the transformer layers in the residual stream, this embedding representation will change and grow, incorporating context and playing a different role depending on the kind of language model we are building

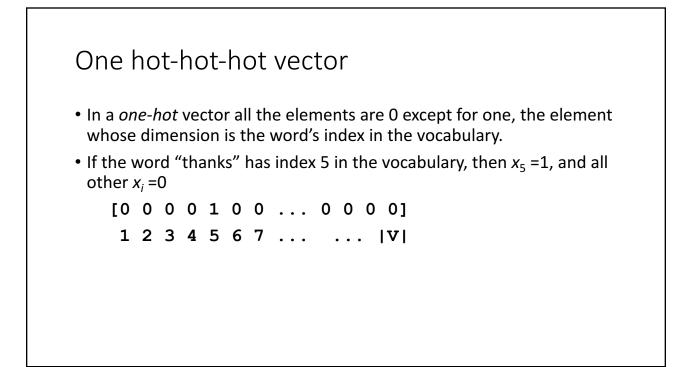
Embeddings and Such

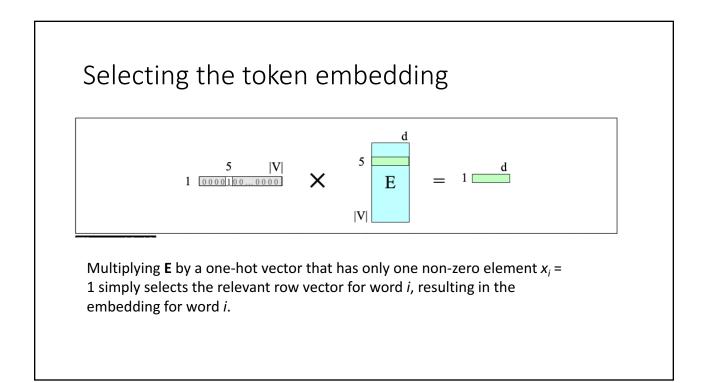
- Given an input token string like *"thanks for all the"* the transformer architecture first convert the tokens into vocabulary indices.
- Let V be the vocabulary and |V| be the size of V.
- Let E be the embedding matrix.
- The representation of *"thanks for all the"* might be w = [5, 4000, 10532, 2224].
- We treat the values of w as indices to corresponding rows from E, (row 5, row 4000, row 10532, row 2224).

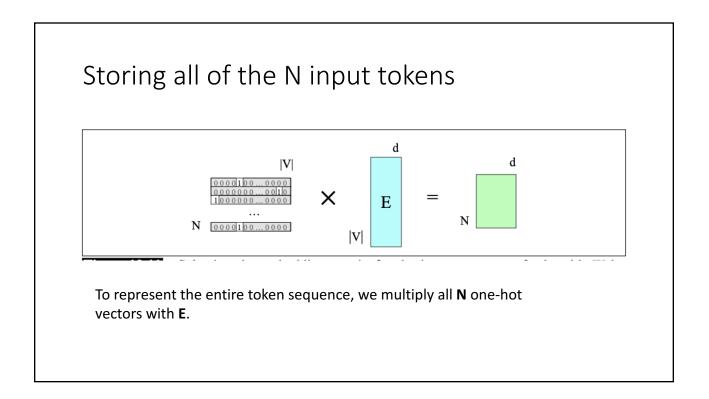
d

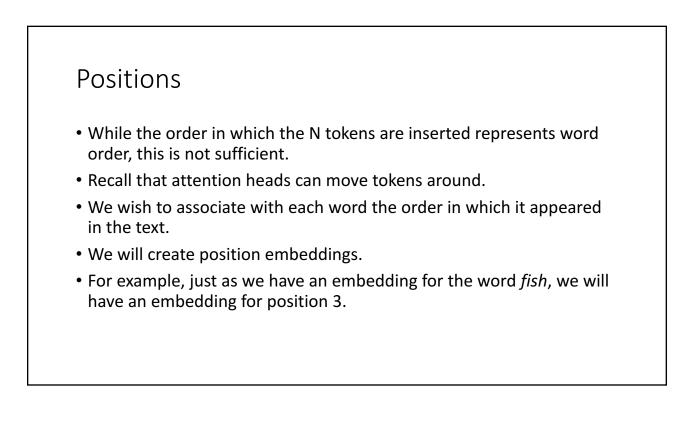
E

 $|\mathbf{V}|$







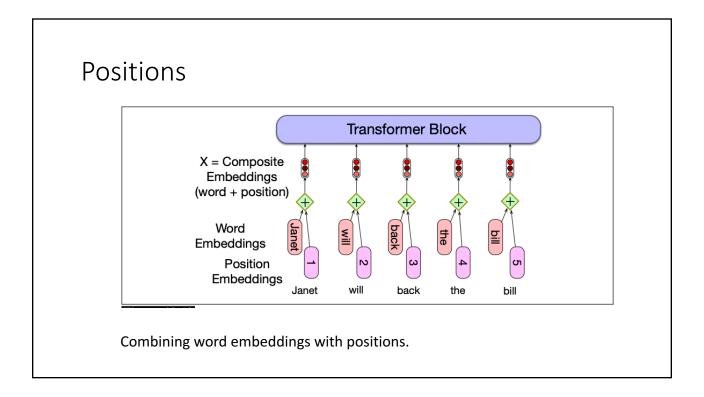


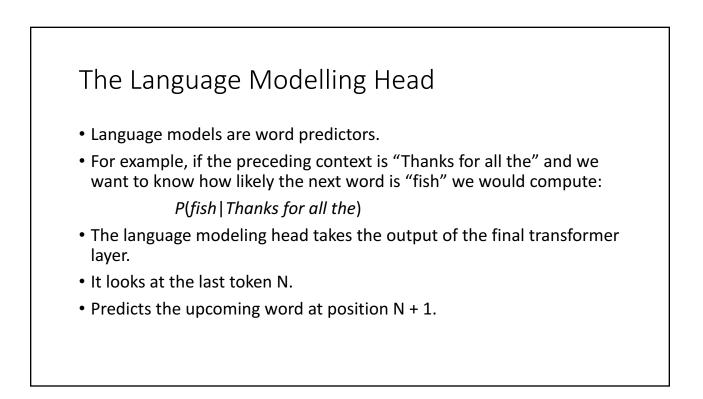
Positions

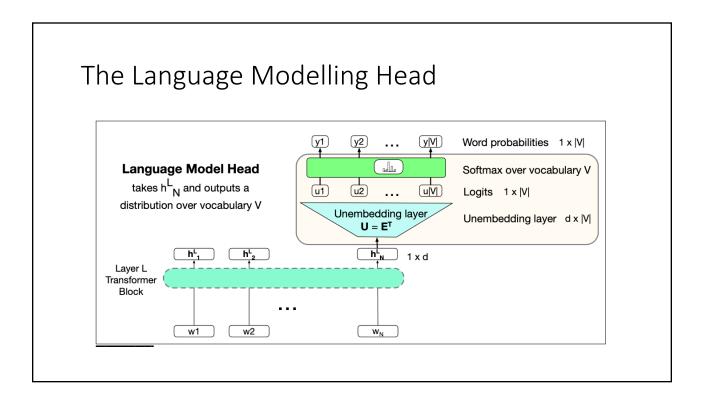
- The positions are absolute.
- We do not simply use integers.
- To be consistent, we use vectors of the same dimensionality as the token embeddings
- The vectors are initialized with random numbers.

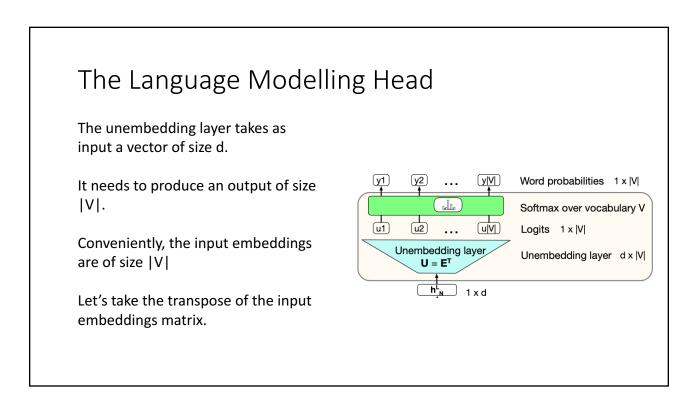
Positions

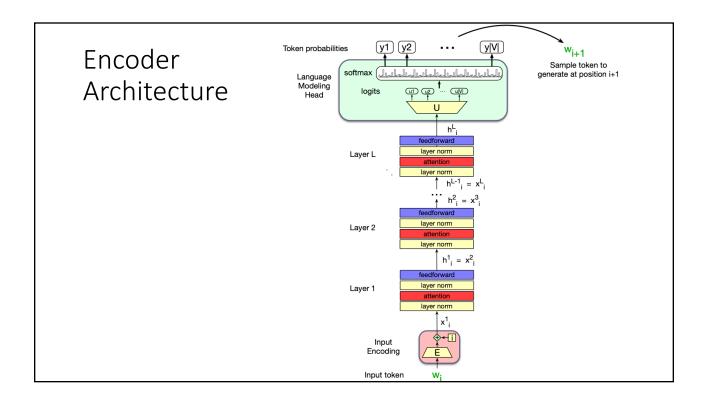
- The positional embeddings are learned along with other parameters during training.
- Recall that token embeddings were learned at some point in time.
- To produce an input embedding that captures positional information, we just add the word embedding for each input to its corresponding positional embedding.

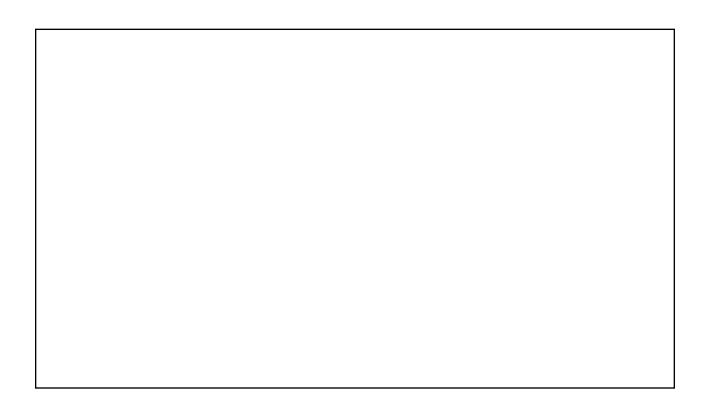


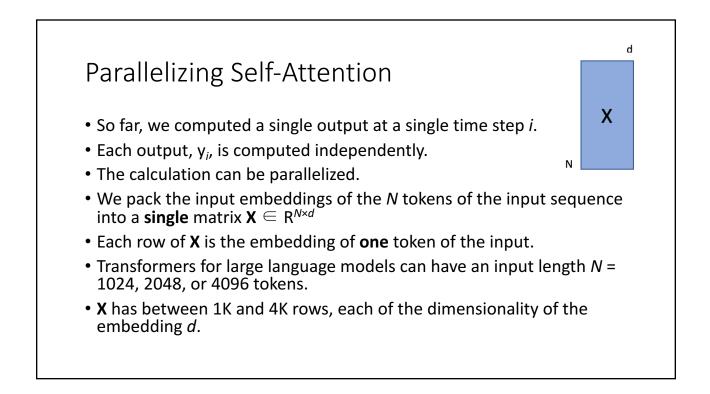












- We multiply **X** by the key, query, and value matrices.
- They all are of size $d \ge d$.
- This produces matrices $\mathsf{Q} \in \mathsf{R}^{\textit{N} imes d}$, $\mathsf{K} \in \mathsf{R}^{\textit{N} imes d}$, and $\mathsf{V} \in \mathsf{R}^{\textit{N} imes d}$
- And the query, key, and value vectors:

Q=XW^Q; K=XW^K; V=XW^V

- Given these matrices we can compute all the requisite query-key comparisons simultaneously by multiplying Q and K^T in a single matrix multiplication.
- The product is of shape $N \times N$.

Masking out the Future

- The self-attention computation has a problem: the calculation in QK^T results in a score for each query value to every key value, including those that follow the query.
- This is inappropriate in the setting of language modeling: guessing the next word is pretty simple if you already know it!
- Hence, the upper-triangle portion of the comparisons matrix set to -∞.
- Softmax will turn them into zeros

			_	
q1•k1	-8	-∞	-∞	-∞
q2•k1	q2•k2	-∞	-∞	-∞
q3•k1	q3•k2	q3•k3	-∞	-∞
q4•k1	q4•k2	q4•k3	q4•k4	-∞
q5•k1	q5•k2	q5•k3	q5•k4	q5•k5

Ν

Ν

Image source: Speech and Language Processing, Jursafky and Martin, Jan. 12, 2022 draft

