Transformers – Part 1

Summary of Chapter 10 from Speech and Language Processing, Jurafsky and Martin, August 20, 2024 draft Michael Wollowski

Next Word Prediction

• It is a truth universally acknowledged, that a single man in possession of a good fortune, must be in want of a ...

Next Word Prediction

- It is a truth universally acknowledged, that a single man in possession of a good fortune, must be in want of a **wife**.
 - Jane Austen: Pride and Prejudice
- In my younger and more vulnerable years my father gave me some advice that I've been turning over in my mind ever **since**.
 - F. Scott Fitzgerald, The Great Gatsby
- All this happened, more or ...

Next Word Prediction

- It is a truth universally acknowledged, that a single man in possession of a good fortune, must be in want of a **wife**.
 - Jane Austen: Pride and Prejudice
- In my younger and more vulnerable years my father gave me some advice that I've been turning over in my mind ever **since**.
 - F. Scott Fitzgerald, The Great Gatsby
- All this happened, more or less.
 - Kurt Vonnegut, Slaughterhouse-Five

Transformers: The Basics

- The transformer is the standard architecture for building large language models.
- Left-to-right (autoregressive) language modeling:
 - Given a sequence of input tokens,
 - Predict output tokens one by one,
 - Conditioned on the prior context.
- Key component of a transformer:
 - self-attention also called multi-head attention.

Quick Review of Attention

- Build contextual representations of a token's meaning.
- Attending to and integrating information from surrounding tokens.
- Helping the model learn how tokens relate to each other over large spans.

Transformers: The Basic Architecture

- Unlike an RNN, a transformer processes several tokens.
- They are called the context window.
- A set of *n* blocks maps an entire input vector (*x*₁, ..., *x*_n) to an output vector (*h*₁, ..., *h*_n) of the same length.
- Typically the "blocks" are several blocks stacked on top of each other.

Transformer Blocks

- Each block is a multilayer network, consisting of:
 - a multi-head attention layer,
 - feedforward networks and
 - layer normalization steps.
- Lot's of weights!
- We will investigate those in detail.

GPT-4

- Standard GPT-4 model offers 8,000 tokens for the context*).
- 8000 tokens amount to about 26 pages of a novel^{**}).

*) Source: Maximum Token length in GPT-4. <u>https://community.openai.com/t/maximum-token-length-in-gpt-4/385914</u>

**) Assuming 250-300 words per book page. Source: <u>https://hotghostwriter.com/blogs/blog/novel-length-how-long-is-long-enough</u> It should be noted that the token count is typically larger than the word count.

GPT-4

- An extended 32,000 token context-length model is available^{*)}.
- 32000 tokens amount to about 106 pages of a novel^{**}).
- Suddenly, next word prediction does not seem to be such a hard problem any longer.

*) Source: Maximum Token length in GPT-4. <u>https://community.openai.com/t/maximum-token-length-in-gpt-4/385914</u>

**) Assuming 250-300 words per book page. Source: <u>https://hotghostwriter.com/blogs/blog/novel-length-how-long-is-long-enough</u> It should be noted that the token count is typically larger than the word count.

Attention

- Embeddings represent a word's meaning by a fixed vector.
- The word "chicken" has a specific vector.
- And so does the pronoun "it."
- The vector for "it" might somehow encode that this it is a pronoun.
- However, a pronoun refers to some noun.
- This noun appears in the sentence or surrounding sentences.
- This sentences are the context.

Attention

- Consider the following examples.
 - The <u>chicken</u> didn't cross the road because **it** was too tired.
 - The chicken didn't cross the <u>road</u> because **it** was too wide.

- Word meanings can be learned even without any grounding in the real world.
- They can be learned solely based on the content of the texts we encounter.
- So, yes, don't go out in the world! Stay in your rooms!
- This knowledge is based on the complex association of words with the words they co-occur with.

Transformers and World Knowledge

- The stacked layers in a transformer: used to build up richer and richer contextualized representations of the words in a sentence.
- The goal is to produce a contextualized representation for each word at each position.

Back to Chickens Though

• Consider:

The chicken didn't cross the road because it ...

- At this point we do not yet know which thing "it" is going to end up referring to.
- A representation of the input must be such that "it" can be resolved to "chicken" or "road."

Simplified Version of Attention

- Each α_{ii} is a scalar.
- It is used for weighing the value of input x_j when summing up the inputs to compute a_j.
- How shall we compute this α weighting?
- We weight each prior embedding proportionally to how similar it is to the current token *i*.
- The output of attention is a sum of the embeddings of prior tokens weighted by their similarity with the current token embedding.

Less Simplified Version of Attention

- There are three different roles that each input embedding plays during the course of the attention process:
 - **Query**: As *the current element* being compared to the other preceding inputs.
 - **Key**: In its role as *a preceding input* being compared to the current element to determine a similarity weight.
 - Value: As a value of a preceding element that gets weighted and summed up to compute the output for the current element.

